Novel host-guest organogels as stabilized by the formation of crown-ammonium pseudo-rotaxane complexes.

Chem Commun (Camb)

Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

Published: June 2003

A dibenzo-24-crown-8 derivative bearing two cholesterol groups is either insoluble in or precipitates from most organic solvents, but its pseudo-rotaxane complex with a diammonium guest acts as a good gelator of aromatic solvents.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b303061jDOI Listing

Publication Analysis

Top Keywords

novel host-guest
4
host-guest organogels
4
organogels stabilized
4
stabilized formation
4
formation crown-ammonium
4
crown-ammonium pseudo-rotaxane
4
pseudo-rotaxane complexes
4
complexes dibenzo-24-crown-8
4
dibenzo-24-crown-8 derivative
4
derivative bearing
4

Similar Publications

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

This study reports a novel ratiometric fluorescence sensor based on a tetraphenylethylene-bipyridine covalent organic framework (TPE-Bpy-COF) for the sensitive detection of Cu, leveraging the unique coordination properties of the bipyridine moieties. The interaction between Cu and the nitrogen atoms in the bipyridine units induces fluorescence quenching at 500 nm through an efficient host-guest electron transfer mechanism, where excited-state electrons from the COF framework are transferred to the vacant orbitals of Cu. Upon excitation at 410 nm, the sensor exhibits a primary emission peak at 500 nm, which is quenched in the presence of Cu, while an overtone peak at 820 nm remains stable, serving as an internal reference for ratiometric measurements and significantly enhancing the accuracy and reliability of the sensor.

View Article and Find Full Text PDF

A supramolecular assembly of a novel green fluorescent protein chromophore-based analogue and its application in fluorescence anti-counterfeiting.

J Mater Chem B

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.

Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host-guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly-disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (CA) and cucurbit[7]uril (CB[7]).

View Article and Find Full Text PDF

Fluorescent Macrocyclic Arenes: Synthesis and Applications.

Angew Chem Int Ed Engl

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Fluorescent macrocyclic arenes have attracted increasing interest in macrocyclic and supramolecular chemistry due to their exceptional photophysical properties and versatile applications. Classical macrocyclic arenes modified with fluorescent groups at the upper or bottom rims have long provided valuable platforms across various fields. Recently, a large number of novel fluorescent macrocyclic arenes directly composed of polycyclic aromatic or heteroaromatic building blocks including naphthalene, anthracene, tetraphenylethene, pyrene, fluorene, carbazole, acridan, phenothiazine, coumarin, triphenylamine, benzothiadiazole and so on, have been reported, and they have shown specific fluorescent property, and also exhibited broad applications in molecular recognition, sensing, bioimaging and functional materials.

View Article and Find Full Text PDF

We report a series of dibenzyl isophthalates (DBIs) as novel hosts for room-temperature phosphorescence (RTP) host-guest systems, achieving RTP quantum yields (QY) of up to 77% or lifetimes of up to 21.0 s with the guest coronene- . Furthermore, a 4,4'-Br substituted DBI was used to form host-guest RTP systems with 15 different aromatic guest molecules, to tune the phosphorescence emission color from blue to red and to demonstrate the versatility of the host.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!