1. In the present study, we describe the expression of the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as well as their receptors in PC-3 cells, a human prostate cancer cell line. In addition, we have investigated their role in apoptosis induced by serum starvation. 2. By RT-PCR and immunocytochemistry assays, we have demonstrated the production of VIP and PACAP in PC-3 cells. 3. We have demonstrated by RT-PCR and binding assays the expression of common PACAP/VIP (VPAC(1) and VPAC(2)) receptors, but not PACAP-specific (PAC(1)) receptors. The pharmacological profile of [(125)I]-VIP binding assays was as follows: VPAC(1) antagonist=VPAC(1) agonist>VIP>VPAC(2) agonist (IC(50)=1.2, 1.5, 2.3 and 30 nM, respectively). In addition, both receptor subtypes are functional since VIP, PACAP-27 or VPAC(1) and VPAC(2) agonists all increased the intracellular levels of cAMP. 4. The expression of both peptides and their receptors is similar in serum-cultured and serum-deprived PC-3 cells. The treatment of serum-deprived PC-3 cells with exogenous VIP or PACAP-27 increases cell number and viability in a dose-dependent manner, as demonstrated by cellular counting and MTT assays. The increased cell survival is exerted through the VPAC(1) receptor, since a VPAC(1), but not VPAC(2), receptor agonist, mimics the effects and a VPAC(1) receptor antagonist blocks it. Moreover, VIP and PACAP-27 inhibit genomic DNA fragmentation in PC-3 cells triggered by serum starvation, and increase the immunoreactivity of the antiapoptotic protein bcl-2. 5. Our results suggest that VIP and PACAP are autocrine/paracrine factors that protect PC-3 cells from apoptosis through VPAC1 receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573913PMC
http://dx.doi.org/10.1038/sj.bjp.0705317DOI Listing

Publication Analysis

Top Keywords

pc-3 cells
24
vip pacap
12
vpac1 vpac2
12
vip pacap-27
12
factors protect
8
prostate cancer
8
cancer cell
8
apoptosis induced
8
induced serum
8
serum starvation
8

Similar Publications

Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined.

View Article and Find Full Text PDF

Prostate cancer remains a significant global health concern, prompting ongoing exploration of novel therapeutic agents. Licochalcone A, a natural product in the chalcone family isolated from licorice root, is characterized by its enone structure and demonstrates antiproliferative activity in the micromolar range across various cell lines, including prostate cancer. Building on our prior success in enhancing curcumin's antiproliferative potency by replacing the substituted phenol with a 1-alkyl-1H-imizadol-2-yl moiety, we applied a similar approach to design a new class of licochalcone A-inspired chalcones.

View Article and Find Full Text PDF

Epigenetic dysregulation is a common feature of cancer. Promoter demethylation of tumor-promoting genes and global DNA hypomethylation may trigger tumor progression. Epigenetic changes are unstable; thus, research has focused on detecting remedies that target epigenetic regulators.

View Article and Find Full Text PDF

Tribulus terrestris L. from the family of Zygophyllaceae, which is rich in saponin compounds, especially diosgenin, has various biological properties, such as anti-inflammation, anti-Alzheimer, anti-obesity, anti-diabetes, anti-leukemia, and anti-cancer activities, due to these compounds. This research aimed to study the diversity of agro-morphological and phytochemical traits and anti-proliferative activity against human prostate cancer cells (PC3) of T.

View Article and Find Full Text PDF

Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!