Visualization of an endophytic Streptomyces species in wheat seed.

Appl Environ Microbiol

Department of Medical Biotechnology, Flinders University, Bedford Park, South Australia 5042, Australia.

Published: July 2003

Endophytic filamentous actinobacteria were isolated from surface-sterilized roots of wheat plants. Endophytic colonization of germinating wheat seed was examined using one of these endophytes, Streptomyces sp. strain EN27, tagged with the egfp gene. Endophytic colonization was observed from a very early stage of plant development with colonization of the embryo, endosperm, and emerging radicle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC165167PMC
http://dx.doi.org/10.1128/AEM.69.7.4260-4262.2003DOI Listing

Publication Analysis

Top Keywords

wheat seed
8
endophytic colonization
8
visualization endophytic
4
endophytic streptomyces
4
streptomyces species
4
species wheat
4
seed endophytic
4
endophytic filamentous
4
filamentous actinobacteria
4
actinobacteria isolated
4

Similar Publications

Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.

View Article and Find Full Text PDF

Integrated metabolomic and transcriptomic analysis of anthocyanin metabolism in wheat pericarp.

BMC Genom Data

January 2025

Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China.

Background: Wheat seeds display different colors due to the types and contents of anthocyanins, which is closely related to anthocyanin metabolism. In this study, a transcriptomic and metabolomic analysis between white and purple color wheat pericarp aimed to explore some key genes and metabolites involved in anthocyanin metabolism.

Results: Two wheat cultivars, a white seed cultivar Shiluan02-1 and purple seed cultivar Hengzi151 were used to identify the variations in differentially expressed genes (DEGs) and differentially accumulated flavonoids (DAFs).

View Article and Find Full Text PDF

Wheat is one of the most extensively grown crops in the world; however, its productivity is reduced due to salinity. This study focused on millimeter wave (MMW) irradiation to clarify the salt-stress tolerance mechanism in wheat. In the present study, wheat-root growth, which was suppressed to 77.

View Article and Find Full Text PDF

Synergistic Effect of Sugarcane Bagasse and Zinc Oxide Nanoparticles on Eco-Remediation of Cadmium-Contaminated Saline Soils in Wheat Cultivation.

Plants (Basel)

December 2024

Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary.

Soil contamination with cadmium (Cd) and salinity poses a significant challenge, affecting crop health and productivity. This study explores the combined application of sugarcane bagasse (SCB) and zinc oxide nanoparticles (ZnO NPs) to mitigate the toxic effects of Cd and salinity in wheat plants. Field experiments conducted in Cd-contaminated saline soils revealed that the application of SCB (0, 5, and 10 t ha) and ZnO NPs (0, 12.

View Article and Find Full Text PDF

Transcriptomic Analysis of Wheat Under Multi LED Light Conditions.

Plants (Basel)

December 2024

Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China.

Light is a vital environmental cue that profoundly influences the development of plants. LED lighting offers significant advantages in controlled growth environments over fluorescent lighting. Under monochromatic blue LED light, wheat plants exhibited reduced stature, accelerated spike development, and a shortened flowering period with increased blue light intensity promoting an earlier heading date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!