Potential virulence attributes, serotypes, and ribotypes were determined for 178 pathogenic Vibrio parahaemolyticus isolates from clinical, environmental, and food sources on the Pacific, Atlantic, and Gulf Coasts of the United States and from clinical sources in Asia. The food and environmental isolates were generally from oysters, and they were defined as being pathogenic by using DNA probes to detect the presence of the thermostable direct hemolysin (tdh) gene. The clinical isolates from the United States were generally associated with oyster consumption, and most were obtained from outbreaks in Washington, Texas, and New York. Multiplex PCR was used to confirm the species identification and the presence of tdh and to test for the tdh-related hemolysin trh. Most of the environmental, food, and clinical isolates from the United States were positive for tdh, trh, and urease production. Outbreak-associated isolates from Texas, New York, and Asia were predominantly serotype O3:K6 and possessed only tdh. A total of 27 serotypes and 28 ribogroups were identified among the isolates, but the patterns of strain distribution differed between the serotypes and ribogroups. All but one of the O3:K6 isolates from Texas were in a different ribogroup from the O3:K6 isolates from New York or Asia. The O3:K6 serotype was not detected in any of the environmental and food isolates from the United States, and none of the food or environmental isolates belonged to any of the three ribogroups that contained all of the O3:K6 and related clinical isolates. The combination of serotyping and ribotyping showed that the Pacific Coast V. parahaemolyticus population appeared to be distinct from that of either the Atlantic Coast or Gulf Coast. The fact that certain serotypes and ribotypes contained both clinical and environmental isolates while many others contained only environmental isolates implies that certain serotypes or ribotypes are more relevant for human disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC165168PMC
http://dx.doi.org/10.1128/AEM.69.7.3999-4005.2003DOI Listing

Publication Analysis

Top Keywords

environmental food
16
united states
16
environmental isolates
16
isolates
13
serotypes ribotypes
12
clinical isolates
12
isolates united
12
vibrio parahaemolyticus
8
environmental
8
food clinical
8

Similar Publications

The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).

View Article and Find Full Text PDF

Seasonal Changes in the Gut Microbiota of Halyomorpha halys.

Microb Ecol

December 2024

Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.

The gut microbiome plays an important role in insect evolution and ecology. Bacteria support the host's nutrition and defense and therefore play an important role in the fitness of the host. Halyomorpha halys is one of the most important invasive pest species in the world.

View Article and Find Full Text PDF

Ultrafine metal-organic framework @ graphitic carbon with MoS-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages.

Mikrochim Acta

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.

GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Holistic monitoring of Campylobacter jejuni biofilms with NanoLuc bioluminescence.

Appl Microbiol Biotechnol

December 2024

Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia.

Campylobacter jejuni, a major cause of foodborne zoonotic infections worldwide, shows a paradoxical ability to survive despite its susceptibility to environmental and food-processing stressors. This resilience is likely due to the bacterium entering a viable but non-culturable state, often within biofilms, or even initiating biofilm formation as a survival strategy. This study presents an innovative application of NanoLuc bioluminescence to accurately monitor the development of C.

View Article and Find Full Text PDF

Background: The inclusion of sustainable protein sources in poultry feed has become essential for improving animal welfare in livestock production. Black soldier fly larvae are a promising solution due to their high protein content and sustainable production. However, most research has focused on fast-growing poultry breeds, while the effects on native breeds, such as the Bianca di Saluzzo, are less explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!