A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Resilience of epilithic algal assemblages in atmospherically and experimentally acidified boreal lakes. | LitMetric

Algal assemblages can be highly responsive to environmental changes in recovering acidified lakes. We compared epilithic algal assemblages in boreal lakes during chemical recovery from atmospheric (Killarney Park, Ontario) and experimental (Lake 302S, Experimental Lakes Area, Ontario) acidification to assess the impact of spatial and temporal scale of severe acidification on taxonomic resilience (i.e. recovery rate). Resilience was measured as the distance traveled by lakes in ordination space during pH recovery based on canonical correspondence analysis. Resilience was relatively negligible in the Killarney lakes, suggesting that eight years of experimental acidification in Lake 302S had less impact on biological recovery than did decades of regional acidification. Increases in dissolved organic carbon, dissolved inorganic carbon, and calcium best explained temporal variance of epilithic species abundances in the recovering acidified lakes. In Lake 302S, contrasting trajectories of taxonomic resilience and resistance, i.e. displacement from reference conditions following a perturbation, indicated that ecological factors affecting epilithon differed at corresponding pH levels during recovery and acidification. Our findings reveal that modeling of ecosystem recovery from severe acidification must account for the spatial and temporal scale of the perturbation, and biological delay responses that result in differences between recovery and acidification trajectories.

Download full-text PDF

Source
http://dx.doi.org/10.1579/0044-7447-32.3.196DOI Listing

Publication Analysis

Top Keywords

algal assemblages
12
lake 302s
12
epilithic algal
8
boreal lakes
8
recovering acidified
8
acidified lakes
8
spatial temporal
8
temporal scale
8
severe acidification
8
taxonomic resilience
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!