The effects were studied of both nitrogen and phosphorus limitation and irradiance on the performance and operation of photosynthesis in tomato leaves (Lycopersicon esculentum Mill.). Plants were grown at low N, high N, low P or high P supply and at two irradiances. Using mature leaves, measurements were made of the irradiance dependencies of the relative quantum efficiencies of photosystems I and II, and of the rate of carbon dioxide fixation. Measurements were also made of foliar starch and chlorophyll concentrations. The results showed that photosynthetic light-harvesting and electron-transport activity acclimate to nutrient stress and growth irradiance such that the internal relationships between electron transport by photosystems I and II do not change; the linear relationship between PhiPSII, and PhiPSI was not affected. It was also evident that under N stress photosynthesis was reduced by a decreased light absorption and by the decreased utilization of assimilates, while P stress mainly affected the carboxylation capacity. Under N stress foliar starch levels increased and the oxygen sensitivity of CO2 fixation decreased, whereas P stress resulted in decreased starch levels and increased oxygen sensitivity of CO2 fixation. The relationship between starch accumulation and oxygen sensitivity (increased starch correlated with decreased oxygen sensitivity) was always the same across the nutrient treatments. These results are consistent with N deprivation producing an increasing limitation of photosynthesis, possibly by feedback from the leaf carbohydrate pool, whereas, although P deprivation produces a decreased rate of CO2 fixation, this is accompanied by a increase in oxygen sensitivity, suggesting that feedback limitation is decreased under P stress.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erg193DOI Listing

Publication Analysis

Top Keywords

oxygen sensitivity
20
co2 fixation
12
photosynthesis tomato
8
feedback limitation
8
low high
8
foliar starch
8
starch levels
8
levels increased
8
increased oxygen
8
sensitivity co2
8

Similar Publications

This study investigated the predictive value of combining peripheral blood indicators with procalcitonin clearance rate (PCTc) to assess mortality risk in cancer patients with sepsis, aiming to develop a more sensitive and specific clinical tool. A retrospective analysis was conducted on 393 cancer patients with sepsis admitted to South China Hospital of Shenzhen University from January 2019 to January 2024. Collected data included clinical demographics, laboratory indicators such as white blood cell count, neutrophil count (NEUT), platelet count (PLT), lymphocyte count (LYC), C-reactive protein, procalcitonin (PCT), alanine aminotransferase, and the ratio of arterial oxygen partial pressure to inspired oxygen fraction, as well as functional scores like Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment.

View Article and Find Full Text PDF

Mutations in the mitochondrial (mt) genome contribute to metabolic dysfunction and their accumulation relates to disease progression and resistance development in cancer cells. This study explores the mutational status of the mt genome of cisplatin-resistant -sensitive testicular germ cell tumor (TGCT) cells and explores its association with their respiration parameters, expression of respiratory genes, and preferences for metabolic pathways to reveal new markers of therapy resistance in TGCTs. Using Illumina sequencing with Twist Enrichment Panel, the mutations of mt genomes of sensitive 2102EP, H12.

View Article and Find Full Text PDF

A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.

View Article and Find Full Text PDF

Background: The oxygen reactivity index (ORx) reflects the correlation between focal brain tissue oxygen (pbtO) and the cerebral perfusion pressure (CPP). Previous, small cohort studies were conflicting on whether ORx conveys cerebral autoregulatory information and if it is related to outcome in traumatic brain injury (TBI). Thus, we aimed to investigate these issues in a larger TBI cohort.

View Article and Find Full Text PDF

Post-synthesis surface modification of Cu/Zr metal azolate framework: A pathway to highly sensitive electrochemical biosensors for atrazine detection.

Anal Chim Acta

February 2025

Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea. Electronic address:

Background: Atrazine (ATZ), a pesticide that poses serious health problems, is observed in the environment, thereby prompting its periodic monitoring and control using functional biosensors. However, established methods for ATZ detection have limited applicability. Two-dimensional (2D) metal azolate frameworks (MAF) have a higher surface area per unit volume and provide easier access to active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!