Schizophrenia is a common neuropsychiatric disorder of uncertain etiology that is believed to result from the interaction of environmental factors and multiple genes. To identify new genes predisposing to schizophrenia, numerous groups have focused on CAG-repeat-containing genes. We previously reported a CAG repeat polymorphism that was shown to be associated with both the severity of the phenotype and the response to medication in schizophrenic patients. In this article, we now report the genomic structure of this gene, the retinoic acid inducible-1 gene (RAI1), and present its characterization. This gene, located on chromosome 17p11.2, comprises six exons coding for a 7.6-kb mRNA. The RAI1 gene is highly homologous to its mouse counterpart and it is expressed at high levels mainly in neuronal tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0888-7543(03)00101-0 | DOI Listing |
Genes (Basel)
December 2024
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
Background: Neurodevelopmental disorders (NDDs) affect approximately 15% of children and adolescents worldwide. This group of disorders is often polygenic with varying risk factors, with many associated genes converging on shared molecular pathways, including chromatin regulation and transcriptional control. Understanding how NDD-associated chromatin regulators and protein complexes orchestrate these regulatory pathways is crucial for elucidating NDD pathogenesis and developing targeted therapeutic strategies.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
Gene therapy holds great therapeutic potential. Yet, controlling cargo expression in single cells is limited due to the variability of delivery methods. We implement an incoherent feedforward loop based on proteolytic cleavage of CRISPR-Cas activation or inhibition systems to reduce gene expression variability against the variability of vector delivery.
View Article and Find Full Text PDFRNA
November 2024
Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
Stem Cell Res
December 2024
Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013 San Giovanni Rotondo, FG Italy. Electronic address:
Smith-Magenis syndrome (SMS) is a complex neurodevelopmental disorder with a birth incidence of 1:25,000. SMS is caused by haploinsufficiency of the retinoic acid-induced retinoic acid1 (RAI1) gene, determined by an interstitial deletion of ∼ 3.7 Mb (17p11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!