A single branched isomer of p-nonylphenol, 4(3',6'-dimethyl-3'-heptyl)-phenol, previously identified by gas chromatography-mass spectrometry as one of the major constituent isomers in p-nonylphenol (constituting approximately 10% of all its isomers), was synthesized and used in studies of its bioaccumulation and excretion in the hermophroditic pond snail Lymnaea stagnalis L. Branched isomers of nonylphenol are perceived to have more estrogenlike toxicity than the straight-chain isomers in addition to being more resistant to biodegradation in the environment. With an average static exposure concentration of 104 microg/L (range: 92-116 microg/L) in water at 19 degrees C for 8 d, the uptake of the compound was found to be fairly rapid, reaching a peak concentration of 23,548 microg/kg of whole tissue wet weight after 5 d and a peak bioaccumulation factor (BAFw) of 242 (5,562, based on lipid weight) after 3 d. The uptake data fitted into a logarithmic expression C(t) = 5,231 ln(t) + 11,956, where C(t) is the amount of residues accumulated in whole tissue in micrograms per kilogram tissue wet weight after a period of time, t, and t is the period of exposure in days. By determination of the excretion of 14C-residues released in water and in feces, an average loss of 96% of the accumulated residues was achieved after 22 d of continuous exposure to clean water. By first-order kinetics analysis of the excretion data, an average half-life of excretion of 4.9 d was obtained. By high-performance liquid chromatography and gas-liquid chromatography-mass spectrometry, a catechol metabolite, 4(3',6'-dimethyl-3'-heptyl)-catechol, was detected in tissue extracts (after hydrolysis with beta-glucuronidase) and in feces, in addition to the parent isomer, suggesting that the isomer may have been metabolized by glucuronic acid conjugation and hydroxylation at the ortho position of its phenolic ring.
Download full-text PDF |
Source |
---|
Toxicol Mech Methods
January 2025
Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
Behavioral endpoints are of increasing interest in toxicology because of their sensitivity, but require clear guidance for experimental design. This study describes the design of a hypoxia chamber for use with pond snails, . Studies assessing the switch from water- to air-breathing in hypoxic conditions have previously utilized methods that neglect intricacies of animal behavior such as handling stress and acclimation.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department F.-A. Forel for Environmental and Aquatic Sciences, Section Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH, 1211, Geneva, Switzerland. Electronic address:
Silver nanoparticles (AgNPs) are increasingly used in various consumer products and industrial applications, raising concerns about their environmental impact on aquatic ecosystems. This study investigated the physicochemical stability, trophic transfer, and toxic effects of citrate-coated AgNPs in a freshwater food chain including the diatom Cyclotella meneghiniana and the gastropod Lymnaea stagnalis. AgNPs remained stable in the exposure medium, with a minimal dissolution (<0.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, the Netherlands.
Increased pharmaceutical usage has led to their widespread presence in aquatic environments, resulting in concerns regarding their potential environmental impacts. Antidepressants, particularly selective serotonin reuptake inhibitors (SSRIs) like citalopram, are frequently detected in European surface waters. Acute laboratory studies have demonstrated that citalopram can inhibit algal growth, immobilise Daphnia magna, and may result in foot detachment (i.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
Long-term memory (LTM) formation relies on protein synthesis; however, the full complement of proteins crucial to LTM formation remains unknown in any system. Using an aversive operant conditioning model of aerial respiratory behavior in the pond snail mollusk, (), we conducted a transcriptome-guided proteomic analysis on the central nervous system (CNS) of LTM, no LTM, and control animals. We identified 366 differentially expressed proteins linked to LTM formation, with 88 upregulated and 36 downregulated in LTM compared to both no LTM and controls.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!