High-quality retroreflecting fiber Bragg gratings were written in standard Ge-doped telecom fiber (Corning SMF-28) after a few minutes exposure with pulsed 800-nm, 120-fs laser radiation by use of a deep-etch silica zero-order nulled phase mask optimized for 800 nm. Induced index modulations of 1.9 x 10(-3) were achieved with peak power intensities of 1.2 x 10(13) W/cm2 without any fiber sensitization. The fiber gratings are stable and did not erase after 2 weeks at 300 degrees C. The primary mechanism of induced index change results from a structural modification to the fiber core.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.28.000995DOI Listing

Publication Analysis

Top Keywords

fiber bragg
8
bragg gratings
8
phase mask
8
fiber
6
gratings phase
4
mask 800-nm
4
800-nm femtosecond
4
femtosecond radiation
4
radiation high-quality
4
high-quality retroreflecting
4

Similar Publications

A novel, to the best of our knowledge, optical fiber whispering-gallery mode (WGM) sensor for simultaneously measuring humidity and temperature is proposed and investigated. The proposed sensor is realized by a polyvinyl alcohol (PVA)-coated capillary tube coupling with an optical single-mode fiber (SMF), which is integrated with a fiber Bragg grating (FBG). The as-fabricated sensor can be used not only for relative humidity (RH) sensing but also for temperature detection.

View Article and Find Full Text PDF

Fiber Bragg grating (FBG) accelerometers are extensively utilized across various industries. For a high-performance FBG accelerometer interrogator, achieving low cost, wide range, multi-channel capability, high precision, and high-speed demodulation is critical. This paper proposes a chip-level wavelength demodulation method for FBG accelerometers utilizing a cascaded micro-ring resonator (MRR) array.

View Article and Find Full Text PDF

In naval engineering, particular attention has been given to containerships, as these structures are constantly exposed to potential damage during service hours and since they are essential for large-scale transportation. To assess the structural integrity of these ships and to ensure the safety of the crew and the cargo being transported, it is essential to adopt structural health monitoring (SHM) strategies that enable real-time evaluations of a ship's status. To achieve this, this paper introduces an advancement in the field of smart sensing and SHM that improves ship monitoring and diagnostic capabilities.

View Article and Find Full Text PDF

Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.

View Article and Find Full Text PDF

The effects of mechanical vibrations on control system stability could be significant in control systems designed on the assumption of rigid-body dynamics, such as launch vehicles. Vibrational loads can also cause damage to launch vehicles due to fatigue or excitation of structural resonances. This paper investigates a method to control structural vibrations in real time using a finite number of strain measurements from a fiber Bragg grating (FBG) sensor array.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!