Induction of micronuclei by Zearalenone in Vero monkey kidney cells and in bone marrow cells of mice: protective effect of Vitamin E.

Mutat Res

Laboratoire de Recherche sur les Substances Biologiquement Compatibles (LRSBC), Faculté de Médecine Dentaire, Rue Avicenne, 5019 Monastir, Tunisia.

Published: July 2003

Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin mainly produced by Fusarium graminaerum, found as a world-wide contaminant mainly of corn and wheat. Previous studies have demonstrated that among several other effects on animals and humans, ZEN also displays hepatotoxicity, immunotoxicity and nephrotoxicity. ZEN is mainly known as a hormonal disrupter due to its estrogenic activities and consequent toxicity for reproduction. Furthermore, mutagenic and genotoxic proprieties of ZEN were disclosed recently, the molecular mechanisms of which are not yet well understood. In the present study, the genotoxic potential of ZEN was evaluated using genotoxicity tests: the 'cytokinesis block micronucleus assay' in Vero monkey kidney cells and the 'in vivo mouse bone marrow micronucleus assay'. In cultured cells treated with 5, 10 and 20 microM ZEN, the frequency of binucleated micronucleated cells (BNMN) was assessed in 1000 binucleated cells and in mice given oral doses of 10, 20 and 40 mg/kg bw, the frequency of polychromatic erythrocytes micronucleated (PCEMN) in bone marrow cells was assessed in 2000 polychromatic erythrocytes (PCE). The potential prevention of ZEN-induced effects by 25 microM Vitamin E (Vit E) was also evaluated. In vivo, doses of 10, 20 and 40 mg/kg bw ZEN representing, respectively 2, 4 and 8% of the LD50 (LD50 of ZEN in mice is 500 mg/kg bw), were administered to animals either with or without pre-treatment with Vit E (216.6 mg/kg bw) in order to evaluate its preventive potential.ZEN was found to induce micronuclei (MN) in a dose-dependent manner in cultured Vero cells as well as in mouse bone marrow cells. The present data emphasise the likely clastogenic pathway among the molecular mechanisms that underlay the ZEN-induced genotoxicity. Vit E was found to prevent partially-from 30 to 50%-these toxic effects, most likely acting either as a structural analogue of ZEN or as an antioxidant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1383-5718(03)00093-7DOI Listing

Publication Analysis

Top Keywords

bone marrow
16
marrow cells
12
cells
9
zen
9
vero monkey
8
monkey kidney
8
kidney cells
8
cells mice
8
molecular mechanisms
8
micronucleus assay'
8

Similar Publications

The maturation state and density of human cartilage microtissues influence their fusion and development into scaled-up grafts.

Acta Biomater

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:

Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.

View Article and Find Full Text PDF

Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).

View Article and Find Full Text PDF

PurposeChimeric antigen receptor (CAR) T-cell CD19 therapy has changed the treatment paradigm for patients with relapsed/refractory B-cell acute lymphoblastic leukemia. It is frequently associated with potentially severe toxicities: cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and admission to PICU is often required. Some biomarkers seem to correlate with CRS severity.

View Article and Find Full Text PDF

Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics.

Nucleic Acids Res

January 2025

Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.

Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.

View Article and Find Full Text PDF

Background: The management of multiple myeloma is challenging because the disease is incurable and unexpected relapses can threaten a patient's survival. Several assessment systems are currently available, but they often require invasive or costly procedures (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!