The phytogenotoxicity of 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) was assessed using the Tradescantia micronucleus (Trad-MCN) bioassay. Tradescantia cuttings bearing young inflorescences were exposed for 6h to 2,4- or 2,6-DNT amended water solutions up to their respective solubilities. The nominal concentrations were 0, 1.9, 3.8, 7.5, 15, 30, 60, 100, 150, 200mg/l of 2,4-DNT, and 0, 7.5, 15, 30, 60, 90, 120, 180mg/l of 2,6-DNT. Each treatment was repeated three or four times. Chemical concentrations in test solutions were analyzed prior to and after the exposure. Cadmium chloride (0-20mM) was used as the positive control. Micronuclei (MCN) were scored in the tetrad-stage pollen mother cells. The MCN frequency (%), i.e. the number of micronuclei scored in 100 tetrads, was the measurement endpoint. Results indicated that both 2,4-DNT and 2,6-DNT were genotoxic with the minimum effective dose (MED) of 30 and 135mg/l, respectively. Longer exposure (30h) without recovery time at 150mg/l of 2,4-DNT and 180mg/l of 2,6-DNT did not induce significantly higher MCN frequencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1383-5718(03)00089-5 | DOI Listing |
Chemosphere
November 2024
Department of Biology, ICB, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil.
In the face of intense urban expansion, the assessment of water quality plays a crucial role in environmental preservation. Here, we evaluated aquatic genotoxicity in three locations with different degrees of urbanization using Tradescantia pallida var. purpurea and Daphnia magna as bioindicators.
View Article and Find Full Text PDFEnviron Pollut
August 2024
Federal University of Uberlândia, Institute of Biotechnology, Umuarama Campus, Uberlândia, Minas Gerais, Brazil; Federal University of Uberlandia, Institute of Geography, Santa Monica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlandia, Minas Gerais, Brazil. Electronic address:
Atmospheric pollution is a major public health issue and has become increasingly critical for human health. Urban atmospheric pollution is typically assessed through physicochemical indicators aligned with environmental legislation parameters, providing data on air quality levels. While the effects of pollution on sensitive organisms serve as a warning for public health decision-makers, there remains a need to explore the interpretation of environmental data on pollutants.
View Article and Find Full Text PDFJ Toxicol Environ Health B Crit Rev
April 2023
Coordenaç'ão Acad"êmica, Universidade Federal de Santa Maria (UFSM), Cachoeira do Sul, RS, Brazil.
This review examined the mutagenicity and genotoxicity associated with exposure to outdoor air pollutants in Brazil. A search was performed on the Web of Science database using a combination of keywords that resulted in 134 articles. After applying exclusion criteria, a total of 75 articles were obtained.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
May 2022
Laboratory of General and Molecular Genetics, RI Biology, Faculty of Biology, Yerevan State University, 8, Charents Str., Yerevan, Armenia.
River pollution can be caused by anthropogenic or natural factors. When testing water quality for the presence of toxic substances, higher plants as bioindicators for the genotoxic effects of complex mixtures are effective and appropriate. Hence, in this work the Tradescantia (clone 02) stamen hair mutations (Trad-SHM) and Tradescantia micronuclei (Trad-MCN) were used to determine mutagenic and clastogenic potential of an urban river.
View Article and Find Full Text PDFBraz J Biol
December 2021
Universidade Federal da Grande Dourados, Faculdade de Ciências Biológicas e Ambientais, Programa de Pós-Graduação em Biodiversidade e Meio ambiente, Dourados, MS, Brasil.
The objective of this study was to assess air quality in relation to vehicular traffic flow in cities located at different elevations in the Bodoquena microregion, state of Mato Grosso do Sul, Brazil. To do so, a micronucleus test was carried out using the TRAD-MCN bioassay on young Tradescantia buds collected from February to November 2018 in seven cities of the microregion with different traffic flow intensities. Meteorological parameters were evaluated, and vehicular traffic was counted to determine traffic flow in each city.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!