Endothelial cell activation and proliferation are the essential steps in flow-induced arterial remodeling. We investigated endothelial cell turnover in the early stages of high-flow in the rabbit common carotid arteries using an arteriovenous fistula (AVF) model by kinetic investigation of cell proliferation and cell molecular analysis. BrdU was administrated to label endothelial cells (ECs) in DNA synthetic phase (S-phase) of the cell mitotic cycle. Pulse labeling revealed that ECs entered S-phase at 1.5 days of AVF (0.93 +/- 0.19%). Endothelial cell labeling index (EC-LI) peaked at 2 days of AVF (8.90 +/- 0.87%) with a high index of endothelial cell mitosis (EC-MI, 1.67 +/- 0.47%). Endothelial cell density increased remarkably at 3 days of AVF with a significant decrease in EC-LI (54%) and EC-MI (60%). Study of kinetics of EC proliferation revealed that endothelial cells took 16-24 h to finish one cycle of cell mitosis. Tracking investigation of pulse BrdU-labeled endothelial cells at 1.5 days showed that more than 66% of endothelial cells were BrdU-labeled 1.5 days after labeling. VEGF, integrin alphanubeta3, PECAM-1, and VE-cadherin were upregulated significantly preceding endothelial cell proliferation and kept at high levels during endothelial cell proliferation. These data suggest that endothelial cell proliferation is the initial step in flow-induced arterial remodeling. Hemodynamic forces may drive endothelial cell downstream migration. Expression of VEGF and cell junction molecules contribute to flow-induced arterial remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-4800(03)00032-7DOI Listing

Publication Analysis

Top Keywords

endothelial cell
40
cell proliferation
20
flow-induced arterial
16
arterial remodeling
16
endothelial cells
16
endothelial
15
cell
15
days avf
12
vascular endothelial
8
cell mitosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!