Enzymatic synthesis of 2'-deoxyguanosine with nucleoside deoxyribosyltransferase-II.

Biosci Biotechnol Biochem

Biochemicals Division, Yamasa Corporation, Choshi, Chiba 288-0056, Japan.

Published: May 2003

Nucleoside deoxyribosyltransferase-II (NdRT-II) of Lactobacillus helveticus, which catalyzes the transfer of a glycosyl residue from a donor deoxyribonucleoside to an acceptor base, has a broad specificity for the acceptor bases. Six-substituted purines were found to be substrates as acceptor bases for NdRT-II. Using this property of the enzyme, we established a practical procedure for enzymatic synthesis of 2'-deoxyguanosine (dGuo), consisting of the transglycosylation from thymidine to 6-substituted purine (2-amino-6-chloropurine; ACP) instead of natural guanine and the conversion of 2-amino-6-chloropurine-2'-deoxyriboside (ACPdR) to dGuo with bacterial adenosine deaminase. Through the successive reactions, dGuo was synthesized in high yield.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.67.989DOI Listing

Publication Analysis

Top Keywords

enzymatic synthesis
8
synthesis 2'-deoxyguanosine
8
nucleoside deoxyribosyltransferase-ii
8
acceptor bases
8
2'-deoxyguanosine nucleoside
4
deoxyribosyltransferase-ii nucleoside
4
deoxyribosyltransferase-ii ndrt-ii
4
ndrt-ii lactobacillus
4
lactobacillus helveticus
4
helveticus catalyzes
4

Similar Publications

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.

View Article and Find Full Text PDF

Emerging Roles of TRIM56 in Antiviral Innate Immunity.

Viruses

January 2025

Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!