Extending SEE for large-scale phenotyping of mouse open-field behavior.

Behav Res Methods Instrum Comput

University of Maryland, Baltimore, Maryland, USA.

Published: May 2003

SEE (Software for the Exploration of Exploration) is a visualization and analysis tool designed for the study of open-field behavior in rodents. In this paper, I present new extensions of SEE that were designed to facilitate its use for mouse behavioral phenotyping and, especially, for the problems of discrimination of genotypes and the replication of results across laboratories and experimental conditions. These extensions were specifically designed to promote a new approach in behavioral phenotyping, reminiscent of the approach that has been successfully employed in bioinformatics during recent years. The path coordinates of all animals from many experiments are stored in a database. SEE can be used to query, visualize, and analyze any desirable subsection of this database and to design new measures (endpoints) with increasingly better discriminative power and replicability. The use of the new extensions is demonstrated here in the analysis of results from several experiments and laboratories, with an emphasis on this approach.

Download full-text PDF

Source
http://dx.doi.org/10.3758/bf03202555DOI Listing

Publication Analysis

Top Keywords

open-field behavior
8
extensions designed
8
behavioral phenotyping
8
extending large-scale
4
large-scale phenotyping
4
phenotyping mouse
4
mouse open-field
4
behavior software
4
software exploration
4
exploration exploration
4

Similar Publications

Enhanced inflammatory and immune responses have been observed in patients with major depressive disorder, pointing to anti-inflammatory substances as potential seeds for developing novel antidepressants. Omega-3 polyunsaturated fatty acid metabolites, such as resolvin D and E series, maresins, and protectins (collectively known as specialized pro-resolving mediators) demonstrate anti-inflammatory effects. This study examined the antidepressant-like effects of maresin-1 (MaR1) on lipopolysaccharide (LPS)-induced depression-like behaviors in mice.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Anxiety and depression are leading causes of disability worldwide, often exacerbated by chronic stress. Schinus terebinthifolia Raddi. has been used in traditional medicine for several purposes.

View Article and Find Full Text PDF

Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery.

View Article and Find Full Text PDF

IGF1 enhances memory function in obese mice and stabilizes the neural structure under insulin resistance via AKT-GSK3β-BDNF signaling.

Biomed Pharmacother

January 2025

Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea. Electronic address:

Obesity is a prevalent metabolic disorder linked to insulin resistance, hyperglycemia, increased adiposity, chronic inflammation, and cognitive dysfunction. Recent research has focused on developing therapeutic strategies to mitigate cognitive impairment associated with obesity. Insulin growth factor-1 (IGF1) deficiency is linked to insulin resistance, glucose intolerance, and the progression of obesity-related central nervous system (CNS) disorders.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3. VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!