SEE (Software for the Exploration of Exploration) is a visualization and analysis tool designed for the study of open-field behavior in rodents. In this paper, I present new extensions of SEE that were designed to facilitate its use for mouse behavioral phenotyping and, especially, for the problems of discrimination of genotypes and the replication of results across laboratories and experimental conditions. These extensions were specifically designed to promote a new approach in behavioral phenotyping, reminiscent of the approach that has been successfully employed in bioinformatics during recent years. The path coordinates of all animals from many experiments are stored in a database. SEE can be used to query, visualize, and analyze any desirable subsection of this database and to design new measures (endpoints) with increasingly better discriminative power and replicability. The use of the new extensions is demonstrated here in the analysis of results from several experiments and laboratories, with an emphasis on this approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/bf03202555 | DOI Listing |
Biol Pharm Bull
January 2025
Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
Enhanced inflammatory and immune responses have been observed in patients with major depressive disorder, pointing to anti-inflammatory substances as potential seeds for developing novel antidepressants. Omega-3 polyunsaturated fatty acid metabolites, such as resolvin D and E series, maresins, and protectins (collectively known as specialized pro-resolving mediators) demonstrate anti-inflammatory effects. This study examined the antidepressant-like effects of maresin-1 (MaR1) on lipopolysaccharide (LPS)-induced depression-like behaviors in mice.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Biochemistry Department, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil; Center for Therapeutic Innovation Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, Brazil. Electronic address:
Ethnopharmacological Relevance: Anxiety and depression are leading causes of disability worldwide, often exacerbated by chronic stress. Schinus terebinthifolia Raddi. has been used in traditional medicine for several purposes.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. Electronic address:
Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea. Electronic address:
Obesity is a prevalent metabolic disorder linked to insulin resistance, hyperglycemia, increased adiposity, chronic inflammation, and cognitive dysfunction. Recent research has focused on developing therapeutic strategies to mitigate cognitive impairment associated with obesity. Insulin growth factor-1 (IGF1) deficiency is linked to insulin resistance, glucose intolerance, and the progression of obesity-related central nervous system (CNS) disorders.
View Article and Find Full Text PDFThe bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3. VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!