Periodically locked continuous-wave cavity ringdown spectroscopy.

Appl Opt

Department of Physics, University of Otago, P.O. Box 56, Dunedin, New Zealand.

Published: June 2003

We demonstrate a simple periodically locked cw cavity ringdown spectroscopy technique that enables a very large number of ringdown events to be rapidly acquired. An external cavity diode laser is locked to a high-finesse cavity, and as many as 16,000 ringdown events per second are obtained by periodically switching off the light entering the high-finesse cavity. Following each ringdown event, the light to the cavity is switched back on and cavity lock is rapidly reacquired. Limited only by our relatively modest digitization rate, we obtained a minimum detectable absorption loss of 4.7 x 10(-9) cm(-1), but we show that faster digitization could provide a sensitivity of 5.9 x 10(-10) cm(-1) Hz(-1/2).

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.42.003670DOI Listing

Publication Analysis

Top Keywords

cavity ringdown
12
periodically locked
8
ringdown spectroscopy
8
ringdown events
8
high-finesse cavity
8
cavity
7
ringdown
5
locked continuous-wave
4
continuous-wave cavity
4
spectroscopy demonstrate
4

Similar Publications

Measuring low light absorption with combined uncertainty <1 per mil (‰) is crucial for many applications. Popular cavity ring-down spectroscopy can provide ultrahigh precision, below 0.01‰, but its accuracy is often worse than 5‰ due to inaccuracies in light intensity measurements.

View Article and Find Full Text PDF

Direct Frequency Comb Cavity Ring-Down Spectroscopy Using Vernier Filtering.

J Phys Chem A

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

We present direct frequency comb cavity ring-down spectroscopy with Vernier filtering as a straightforward approach to sensitive and multiplexed trace gas detection. The high finesse cavity acts both to extend the interaction length with the sample and as a spectral filter, alleviating the need for dispersive elements or an interferometer. In this demonstration, a free running interband cascade laser was used to generate a comb centered at 3.

View Article and Find Full Text PDF

Measuring the Stable Isotope Composition of Water in Brine from Halite Fluid Inclusions and Borehole Brine Seeps Using Cavity Ring-Down Spectroscopy.

ACS Earth Space Chem

January 2025

Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

Naturally occurring bedded salt deposits are considered robust for the permanent disposal of heat-generating nuclear waste due to their unique physical and geological properties. The Brine Availability Test in Salt (BATS) is a US-DOE Office of Nuclear Energy funded project that uses heated borehole experiments underground (∼655 meters depth) at the Waste Isolation Pilot Plant (WIPP) in the bedded salt deposits of the Salado Formation to investigate the capacity for safe disposal of high-level, heat generating nuclear waste in salt. Uncertainties associated with brine mobility near heat-generating waste motivates the need to characterize the processes and sources of brine in salt deposits.

View Article and Find Full Text PDF

Absorption cross section of gas phase isoprene in the infrared-visible range.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, DK-2100, Denmark. Electronic address:

We have recorded the gas phase spectrum of isoprene at room temperature from the mid-infrared range and into the visible range (600 cm to 17050 cm). Absorption spectra were obtained by Fourier transform infrared, conventional dispersion ultraviolet-visible-near-infrared and cavity ring-down spectroscopy to cover the entire range with a resolution comparable to that of the instruments on the James Webb Space Telescope. We have assigned the CH-stretching fundamental and overtone bands corresponding to the Δv=1-6 transitions based on anharmonic vibrational calculations using normal mode and local mode models, for the lower- and higher-energy regions, respectively.

View Article and Find Full Text PDF

Cavity ring-down spectroscopy (CRDS) is rapidly becoming an invaluable tool to measure hydrogen (δ²H) and oxygen (δO) isotopic compositions in water, yet the long-term accuracy and precision of this technique remain relatively underreported. Here, we critically evaluate one-year performance of CRDS δ²H and δO measurements at ETH Zurich, focusing on high throughput (~200 samples per week) while maintaining required precision and accuracy for diverse scientific investigations. We detail a comprehensive methodological and calibration strategy to optimize CRDS reliability for continuous, high-throughput analysis using Picarro's "Express" mode, an area not extensively explored previously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!