We analyzed protein expression in preparations from whole testis in adult male Sprague-Dawley rats exposed for 6 h/d for 91 consecutive days to jet propulsion fuel-8 (JP-8) in the vapor phase (0, 250, 500, or 1000 mg/m(3) +/- 10%), simulating a range of possible human occupational exposures. Whole body inhalation exposures were carefully controlled to eliminate aerosol phase, and subjects were sacrificed within 48 h postexposure. Organ fractions were solubilized and separated via large-scale, high resolution two-dimensional electrophoresis, and gel patterns scanned, digitized and processed for statistical analysis. Seventy-six different testis proteins were significantly increased or decreased in abundance in vapor-exposed groups, compared to controls, and dose-response profiles were often nonlinear. A number of the proteins were identified by peptide mass fingerprinting and related to histopathological or physiological deficits shown in previously published studies to occur with repeated exposure to hydrocarbon fuels or solvents. These results demonstrate a significant effect of JP-8 exposure on protein expression, particularly in protein expression in the rodent testis, and suggest that a 91 d exposure to jet fuel vapor induces changes of equal or greater magnitude to those reported previously for shorter duration JP-8 aerosol exposures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200300385DOI Listing

Publication Analysis

Top Keywords

protein expression
16
jet fuel
8
fuel vapor
8
analysis rat
4
rat testicular
4
protein
4
testicular protein
4
expression
4
expression 91-day
4
exposure
4

Similar Publications

Background: Extracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.

Methods And Results: This study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions.

View Article and Find Full Text PDF

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands.

View Article and Find Full Text PDF

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!