In the present study, we investigated whether a novel benzopyranylindol analogue, KR-31466 (KR466) (1-[(2S,3R,4S)-3,4-dihydro-2-dimethoxymethyl-3-hydroxy-2-methyl-6-nitro-2H-1-benzopyran-4-yl]-1H-indole-2-carboxylic acid ethyl ester) can attenuate hypoxic injury in heart-derived H9c2 cells and, if so, whether the protective effect of KR466 is mediated through mitochondrial ATP-sensitive potassium (mtK(ATP)) opening. The treatment of H9c2 cells with KR466 (3 - 30 microM) significantly reduced hypoxia-induced cell death in a concentration-dependent manner, as shown by lactate dehydrogenase release and propidium iodide-uptake. In addition, KR466 (10 microM) significantly reduced the increase in hypoxia-induced TUNEL-positive cells, suggesting its anti-apoptotic potential in H9c2 cells. The protective effects of KR466 were abolished by 5-hydroxydecanoate, a specific blocker of the mtK(ATP) channel, suggesting the involvement of the mtK(ATP) channel in the protective effect of KR466. A specific inhibitor of protein kinase C (PKC), chelerythrine (3 microM), significantly attenuated the protective effect of KR466 against hypoxia-induced cardiac cell death. In conclusion, our results suggest that KR466 can protect H9c2 cells from hypoxia-induced death through mtK(ATP) channel opening and PKC activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1254/jphs.92.13 | DOI Listing |
Mol Biol Rep
December 2024
Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Background: The role of 1,25-dihydroxyvitamin-D3 (VitD) and sirtuin-1 (SIRT1) in mitigating pathological cardiac remodeling is well recognized. However, the potential for SIRT1 to mediate the inhibitory effects of VitD on angiotensin II (Ang II) -induced hypertrophy in H9c2 cardiomyoblasts remains unclear.
Methods: H9c2 cardiomyoblasts were exposed to Ang II or a combination of VitD and Ang II, both in the absence and presence of SIRT1-specific siRNA.
Front Pharmacol
December 2024
Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Background: Astragalus mongholicus (AM) and Salvia miltiorrhiza (SM) are commonly used in traditional Chinese medicine to treat heart failure (HF). Ferroptosis has been studied as a key factor in the occurrence of HF. It remains unclear whether the combined use of AM and SM can effectively improve HF and the underlying mechanisms.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.
Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice.
View Article and Find Full Text PDFNat Sci Sleep
December 2024
Department of Cardiovasology, the Traditional Chinese Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China.
Purpose: Intermittent hypoxia (IH), a defining feature of obstructive sleep apnea (OSA), is associated with heart damage and linked to transient receptor potential canonical channel 5 (TRPC5). Nonetheless, the function of TRPC5 in OSA-induced cardiac injury remains uncertain. For this research, we aimed to explore the role and potential mechanism of TRPC5 in cardiomyocyte injury induced by intermittent hypoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!