There is growing evidence that agents that produce oxidative stress in the cochlea have significant ototoxic potential by themselves and can potentiate noise-induced hearing loss as well. Acrylonitrile (ACN) metabolism entails conjugation with glutathione, resulting in rapid and pronounced depletion of this important antioxidant in many organs including brain, liver, and kidney. ACN metabolism also results in cyanide (CN) formation through a secondary oxidative pathway. The results of two physiological experiments are reported here. First, the acute effects of ACN (50 mg/kg sc) on auditory sensitivity are assessed using a within subject study. In the second study, persistent effects of ACN alone (50 mg/kg, sc and 2 x 50 mg/kg, sc) and ACN in combination with noise exposure (8 h, 108 dB octave-band noise) are evaluated using threshold sensitivity as the dependent measure. Auditory threshold shift and absolute thresholds were determined using the compound action potential (CAP) amplitude. Acute ACN administration produces a loss in auditory threshold sensitivity that reached a maximum 10-20 min following sc injection. Auditory thresholds returned to control levels 75-100 min following exposure. In the study of permanent auditory threshold shifts, ACN plus noise increased auditory threshold impairment relative to rats receiving noise only when thresholds were assessed 3 weeks following exposure. ACN by itself did not produce permanent threshold impairment 3 weeks following administration. Assays were undertaken in separate groups of rats to track the elevation in blood CN and the depletion of total glutathione in cochlea, brain, and liver following ACN treatment. Systemic blood CN levels were not significantly elevated until 60-120 min following injection, and cochlear glutathione levels showed significant depletion as little as 15 min after injection and remained depressed for about 4 h. The results confirm the prediction that ACN is acutely ototoxic and can enhance noise-induced hearing loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/toxsci/kfg169 | DOI Listing |
Otol Neurotol
January 2025
Department of Otolaryngology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Hypothesis: Extracochlear electric-acoustic stimulation (EAS) between the round window membrane and the basal part of the cochlear bone exhibits distinct auditory brainstem response (ABR) characteristics.
Background: The use of EAS in individuals with residual hearing is becoming increasingly common in clinical settings. Ongoing research has explored the characteristics of EAS-induced responses in hearing cochleae.
Parkinsonism Relat Disord
November 2024
Department of Psychology, Lancaster University, UK; Manchester Centre for Audiology and Deafness, The University of Manchester, UK.
Background: Hearing impairment is implicated as a risk factor for Parkinson's disease (Parkinson's) incidence, with evidence suggesting that clinically diagnosed hearing loss increases Parkinson's risk 1.5-1.6 fold over 2-5 years follow up.
View Article and Find Full Text PDFPLoS One
January 2025
Dept. of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.
Music pre-processing methods are currently becoming a recognized area of research with the goal of making music more accessible to listeners with a hearing impairment. Our previous study showed that hearing-impaired listeners preferred spectrally manipulated multi-track mixes. Nevertheless, the acoustical basis of mixing for hearing-impaired listeners remains poorly understood.
View Article and Find Full Text PDFeNeuro
January 2025
Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Technologiepark 216, 9052 Zwijnaarde, Belgium
Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available.
View Article and Find Full Text PDFNoise Health
January 2025
Department of Otolaryngology, Head and Neck Surgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde 415000, Hunan, China.
Objective: In this study, the research team aimed to explore the therapeutic effectiveness of hyperbaric oxygen therapy (HBOT) for noise-induced hearing loss (NIHL), its influence on patient prognosis, and its impact on hearing to provide valuable clinical evidence.
Methods: Ninety-four patients with NIHL admitted to The First People's Hospital of Changde City, Hunan, China, from May 2021 to January 2023 were selected for this retrospective analysis. Among them, 43 were given conventional treatment (control group) and 51 were given HBOT (observation group).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!