We investigated the potential of ATP to inhibit heterologously expressed NMDA receptor subunit combinations, NMDA-induced currents in cultured hippocampal cells, and NMDA-induced neurotoxicity. The effect of ATP on diheteromeric NR1a/NR2A-D NMDA receptor (NR) combinations expressed in Xenopus laevis oocytes was studied by voltage-clamp recording. ATP strongly inhibited NMDA-induced inward currents only at the NR1a/NR2B receptor combination. At NMDA concentrations corresponding to the EC50 value (20 microm), ATP revealed an IC50 value of 135 microm. Mutation studies suggest that ATP exerts its inhibition via the glutamate-binding pocket of the NR2B subunit. Inosine 5'-triphosphate (ITP), GTP, and AMP also inhibited the recombinant NR1a/NR2B receptor, whereas UTP and CTP, ADP, or adenosine had no or only a small effect. Correspondingly, ATP inhibited NMDA-induced but not kainate-induced currents at cultured hippocampal neurons. An abundant expression of the NR2B subunit in the cultured neurons was verified by immunocytochemistry and blockade of NMDA-induced currents by the NR2B-selective antagonist ifenprodil. In addition we studied the role of ATP in NMDA-mediated neurotoxicity using cultured rat hippocampal cells. ATP exhibited a dose-dependent rescue effect when coapplied with the excitotoxicant NMDA, in contrast to ADP, AMP, and adenosine. The effect of ATP was mimicked by GTP and ITP but not by UTP and CTP. ATP had no effect on kainate-elicited neurotoxicity. Our results suggest that ATP can act as an inhibitor of NMDA receptors depending on receptor subunit composition and that it can attenuate NMDA-mediated neurotoxicity that is mediated neither by ATP nor by adenosine receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6741184 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.23-12-04996.2003 | DOI Listing |
Microbiol Spectr
December 2024
Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.
Unlabelled: RamA is an intrinsic regulator in , belonging to the AraC family of transcription factors and conferring a multidrug resistance phenotype, especially for tetracycline-class antibiotics. The ATP-binding cassette transporters MlaFEDCB in bacteria play essential roles in functions essential for cell survival and intrinsic resistance to many antibiotics. We found deletion of resulted in a fivefold decrease in the transcriptional levels of the operon.
View Article and Find Full Text PDFmSphere
December 2024
Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
During aerobic growth, relies on acetate overflow metabolism, a process where glucose is incompletely oxidized to acetate, for its bioenergetic needs. Acetate is not immediately captured as a carbon source and is excreted as waste by cells. The underlying factors governing acetate overflow in have not been identified.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, UK.
Here we present the first use of principal component analysis of the full spectrum of a single europium complex to differentiate between structurally-similar analytes. We demonstrate that it can be used to distinguish between the nucleoside phosphate guests AMP, ADP, and ATP.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Department of Medicine, Leon H. Charney Division of Cardiology (S.Z., B.-X.L., A.C., M.F., E.A.F., S.P.H.).
Background: Cholesterol efflux capacity (CEC) of HDL (high-density lipoprotein) is inversely associated with incident cardiovascular events, independent of HDL cholesterol. Obesity is characterized by low HDL cholesterol and impaired HDL function, such as CEC. Bariatric surgery, including Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), broadly leads to improved cardiovascular outcomes, but impacts on risk factors differ by procedure, with greater improvements in weight loss, blood pressure, and glycemic control after RYGB, but greater improvements in HDL cholesterol and CEC levels after SG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!