The electron density maps of the catalase-peroxidase from Burkholderia pseudomallei (BpKatG) presented two unusual covalent modifications. A covalent structure linked the active site Trp111 with Tyr238 and Tyr238 with Met264, and the heme was modified, likely by a perhydroxy group added to the vinyl group on ring I. Mass spectrometry analysis of tryptic digests of BpKatG revealed a cluster of ions at m/z 6585, consistent with the fusion of three peptides through Trp111, Tyr238, and Met264, and a cluster at m/z approximately 4525, consistent with the fusion of two peptides linked through Trp111 and Tyr238. MS/MS analysis of the major ions at m/z 4524 and 4540 confirmed the expected sequence and suggested that the multiple ions in the cluster were the result of multiple oxidation events and transfer of CH3-S to the tyrosine. Neither cluster of ions at m/z 4525 or 6585 was present in the spectrum of a tryptic digest of the W111F variant of BpKatG. The spectrum of the tryptic digest of native BpKatG also contained a major ion for a peptide in which Met264 had been converted to homoserine, consistent with the covalent bond between Tyr238 and Met264 being susceptible to hydrolysis, including the loss of the CH3-S from the methionine. Analysis of the tryptic digests of hydroperoxidase I (KatG) from Escherichia coli provided direct evidence for the covalent linkage between Trp105 and Tyr226 and indirect evidence for a covalent linkage between Tyr226 and Met252. Tryptic peptide analysis and N-terminal sequencing revealed that the N-terminal residue of BpKatG is Ser22.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M304053200DOI Listing

Publication Analysis

Top Keywords

trp111 tyr238
12
tyr238 met264
12
ions m/z
12
burkholderia pseudomallei
8
mass spectrometry
8
analysis tryptic
8
tryptic digests
8
cluster ions
8
consistent fusion
8
m/z 4525
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!