Tumor cell killing enabled by listeriolysin O-liposome-mediated delivery of the protein toxin gelonin.

J Biol Chem

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA.

Published: September 2003

Gelonin is a type I plant toxin that has potential as an effective anti-tumor agent by virtue of its enzymatic capacity to inactivate ribosomes and arrest protein synthesis, thereby effectively limiting the growth of cancer cells. Being a hydrophilic macromolecule, however, gelonin has limited access to its target subcellular compartment, the cytosol; it is effectively plasma membrane-impermeant and subject to rapid degradation within endosomes and lysosomes upon cellular uptake as it lacks the membrane-translocating capability that is typically provided by a disulfide-linked B polypeptide found in the type II toxins (e.g. ricin). These inherent characteristics generate the need for the development of a specialized cytosolic delivery strategy for gelonin as an effective anti-tumor therapeutic agent. Here we describe an efficient means of delivering gelonin to the cytosol of B16 melanoma cells. Gelonin was co-encapsulated inside pH-sensitive liposomes with listeriolysin O, the pore-forming protein that mediates escape of the intracellular pathogen Listeria monocytogenes from the endosome into the cytosol. In in vitro experiments, co-encapsulated listeriolysin O enabled liposomal gelonin-mediated B16 cell killing with a gelonin IC50 of approximately 0.1 nM with an extreme efficiency requiring an incubation time of only 1 h. By contrast, cells treated with equivalent concentrations of unencapsulated gelonin or gelonin encapsulated alone in pH-sensitive liposomes exhibited no detectable cytotoxicity. Moreover, treatment by direct intratumor injection into subcutaneous solid tumors of B16 melanoma in a mouse model showed that pH-sensitive liposomes containing both listeriolysin O and gelonin were more effective than control formulations in curtailing tumor growth rates.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M305411200DOI Listing

Publication Analysis

Top Keywords

ph-sensitive liposomes
12
gelonin
10
cell killing
8
gelonin gelonin
8
effective anti-tumor
8
gelonin effective
8
b16 melanoma
8
liposomes listeriolysin
8
tumor cell
4
killing enabled
4

Similar Publications

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF
Article Synopsis
  • - Tuberculosis (TB) is a critical global health issue, and there's an urgent need for effective vaccines; CD8 T-cells, along with CD4 T-cells, are essential for fighting TB.
  • - The study investigates pH-sensitive liposomes as a delivery system for a multi-stage protein vaccine (Ag85b-ESAT6-Rv2034) against TB, aiming to enhance CD8 T-cell responses through improved antigen presentation.
  • - Results show that these liposomes are successfully taken up by immune cells and promote the activation of T-cells, indicating they could be promising candidates for developing effective TB vaccines.
View Article and Find Full Text PDF

Carboxymethyl chitosan and sodium alginate oxide pH-sensitive dual-release hydrogel for diabetes wound healing: The combination of astilbin liposomes and diclofenac sodium.

Carbohydr Polym

February 2025

College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China. Electronic address:

Difficulty in diabetic wound healing presents a significant challenge in clinical practice. This study developed a hydrogel utilizing oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS) as the matrix. Astilbin (ASB), known for its antioxidant properties, was incorporated into Astilbin liposome (AL) using a thin film dispersion method.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) exhibits higher susceptibility towards oxaliplatin (OXA) due to a faulty DNA damage repair system. However, the unfavorable physicochemical properties and risk of toxicities limit the clinical utility of OXA. Therefore, to impart kinetic inertness, site-specific delivery, and multidrug action, an octahedral Pt(IV) prodrug was developed by using chlorambucil (CBL) as a choice of ligand.

View Article and Find Full Text PDF

Development and characterization of pH-sensitive zerumbone-encapsulated liposomes for lung fibrosis via inhalation Route.

Eur J Pharm Biopharm

November 2024

School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya, Malaysia.

Zerumbone (ZER), a compound derived from the rhizome of Zingiber Zerumbet (L.) Smith, has demonstrated anti-inflammatory properties but suffers from poor water solubility, limiting its clinical application. While ZER's effects on lung inflammation are known, its role in lung fibrosis remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!