Platelet adhesion to fibrinogen is important for platelet aggregation and thrombus growth. In this study we have examined the mechanisms regulating platelet adhesion on immobilized fibrinogen under static and shear conditions. We demonstrate that integrin alpha IIb beta 3 engagement of immobilized fibrinogen is sufficient to induce an oscillatory calcium response, necessary for lamellipodial formation and platelet spreading. Released ADP increases the proportion of platelets exhibiting a cytosolic calcium response but is not essential for calcium signaling or lamellipodial extension. Pretreating platelets with the Src kinase inhibitor PP2, the inositol 1,4,5-trisphosphate (IP3) receptor antagonist 2-aminoethoxydiphenyl borate (APB-2), or the phospholipase C (PLC) inhibitor U73122 abolished calcium signaling and platelet spreading, suggesting a major role for Src kinase-regulated PLC isoforms in these processes. Analysis of PLC gamma 2-/- mouse platelets revealed a major role for this isoform in regulating cytosolic calcium flux and platelet spreading on fibrinogen. Under flow conditions, platelets derived from PLC gamma 2-/- mice formed less stable adhesive interactions with fibrinogen, particularly in the presence of ADP antagonists. Our studies define an important role for PLC gamma 2 in integrin alpha IIb beta 3-dependent calcium flux, necessary for stable platelet adhesion and spreading on fibrinogen. Furthermore, they establish an important cooperative signaling role for PLC gamma 2 and ADP in regulating platelet adhesion efficiency on fibrinogen.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M306504200DOI Listing

Publication Analysis

Top Keywords

platelet adhesion
16
plc gamma
16
integrin alpha
12
alpha iib
12
iib beta
12
platelet spreading
12
beta 3-dependent
8
3-dependent calcium
8
platelet
8
regulating platelet
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!