Dynamic genomic variation resulting in changes in envelope antigenicity has been established as a fundamental mechanism of persistence by equine infectious anemia virus (EIAV), as observed with other lentiviruses, including HIV-1. In addition to the reported changes in envelope sequences, however, certain studies indicate the viral LTR as a second variable EIAV gene, with the enhancer region being designated as hypervariable. These observations have lead to the suggestion that LTR variation may alter viral replication properties to optimize to the microenvironment of particular tissue reservoirs. To test this hypothesis directly, we examined the population of LTR quasispecies contained in various tissues of two inapparent carrier ponies experimentally infected with a reference EIAV biological clone for 18 months. The results of these studies demonstrated that the EIAV LTR is in fact highly conserved with respect to the infecting LTR species after 1.5 years of persistent infection and regardless of the tissue reservoir. Thus, these comprehensive analyses demonstrate for the first time that the EIAV LTR is highly conserved during long-term persistent infection and that the observed variations in viral LTR are associated more with in vitro adaptation to replication in cultured cells rather than in vivo replication in natural target cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0042-6822(03)00168-5DOI Listing

Publication Analysis

Top Keywords

eiav ltr
12
ltr
8
inapparent carrier
8
carrier ponies
8
changes envelope
8
viral ltr
8
highly conserved
8
persistent infection
8
eiav
5
characterization eiav
4

Similar Publications

Molecular detection of equine infectious anemia virus in clinically normal, seronegative horses in an endemic area of Mexico.

J Vet Diagn Invest

July 2021

Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León, México.

Equine infectious anemia (EIA) is a highly infectious disease in members of the family, caused by equine infectious anemia virus (EIAV). The disease severity ranges from subclinical to acute or chronic, and causes significant economic losses in the equine industry worldwide. Serologic tests for detection of EIAV infection have some concerns given the prolonged seroconversion time.

View Article and Find Full Text PDF

Equine infectious anemia virus (EIAV) is a persistent lentivirus that causes equine infectious anemia (EIA). In Brazil, EIAV is endemic in the Pantanal region, and euthanasia is not mandatory in this area. All of the complete genomic sequences from field viruses are from North America, Asia, and Europe, and only proviral genomic sequences are available.

View Article and Find Full Text PDF

Although the equine lentivirus (equine infectious anemia virus [EIAV]) poses a major threat to equid populations throughout most regions of the world, detailed knowledge concerning its molecular epidemiology is still in its infancy. Such information is important because the few studies conducted to date suggest there is extensive genetic variation between viral isolates that if confirmed has significant implications for future vaccine design and development of newer diagnostic procedures. Here, we avoid potential assembly artifacts inherent in composite sequencing techniques by using long-range PCR in conjunction with next-generation sequencing for the rapid molecular characterization of all major open reading frames (ORFs) and known transcription factor binding motifs within the long terminal repeats (LTRs) of four North American EIAV isolates from Pennsylvania (EIAV), Tennessee (EIAV), North Carolina (EIAV), and Florida (EIAV).

View Article and Find Full Text PDF

Equine infectious anemia virus in naturally infected horses from the Brazilian Pantanal.

Arch Virol

September 2018

Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

Equine infectious anemia (EIA) has a worldwide distribution, and is widespread in Brazil. The Brazilian Pantanal presents with high prevalence comprising equine performance and indirectly the livestock industry, since the horses are used for cattle management. Although EIA is routinely diagnosed by the agar gel immunodiffusion test (AGID), this serological assay has some limitations, so PCR-based detection methods have the potential to overcome these limitations and act as complementary tests to those currently used.

View Article and Find Full Text PDF

The equine infectious anemia virus (EIAV) attenuated vaccine was developed by long-term passaging of a field-isolated virulent strain in cross-species hosts, followed by successive cultivation in cells To explore the molecular mechanism underlying the evolution of the EIAV attenuated vaccine, a systematic study focusing on long-terminal-repeat (LTR) variation in numerous virus strains ranging from virulent EIAV to attenuated EIAV was performed over time both and Two hypervariable regions were identified within the U3 region in the enhancer region (EHR) and the negative regulatory element (NRE) and within the R region in the transcription start site (TSS) and the Tat-activating region (TAR). Among these sites, variation in the U3 region resulted in the formation of additional transcription factor binding sites; this variation of the -adapted strains was consistent with the loss of pathogenicity. Notably, the same LTR variation pattern was observed both and Generally, the LTR variation in both the attenuated virus and the virulent strain fluctuated over time Interestingly, the attenuated-virus-specific LTR variation was also detected in horses infected with the virulent strain, supporting the hypothesis that the evolution of an attenuated virus might have involved branching from EIAV quasispecies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!