A series of N-fluoroethylpiperidinyl (1), N-fluoroethylpiperidinemethyl (2) and N-fluoroethylpyrrolidinyl (3) esters were synthesized and examined as new (18)F-labeled radiotracers for measuring brain cholinesterase activity. The fluoroethyl group, instead of methyl group, results in slower in vitro enzymatic cleavage rates and higher selectivity for AChE. Based on metabolism in mouse blood and PET time-activity curves in rats, two radiotracers were identified as potential candidates for further in vivo evaluation in higher species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0969-8051(03)00031-3 | DOI Listing |
Nucl Med Biol
July 2003
Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
A series of N-fluoroethylpiperidinyl (1), N-fluoroethylpiperidinemethyl (2) and N-fluoroethylpyrrolidinyl (3) esters were synthesized and examined as new (18)F-labeled radiotracers for measuring brain cholinesterase activity. The fluoroethyl group, instead of methyl group, results in slower in vitro enzymatic cleavage rates and higher selectivity for AChE. Based on metabolism in mouse blood and PET time-activity curves in rats, two radiotracers were identified as potential candidates for further in vivo evaluation in higher species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!