Oocyte biology and genetics revelations from polar bodies.

Reprod Biomed Online

The Jones Institute for Reproductive Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, 601 Colley Avenue, Norfolk, VA 23507, USA.

Published: June 2003

The enormous volume of the fertilized egg is attributable to the suppression of cleavage during oocyte growth and the unequal cleavages during the first and second meiotic divisions. The two products of these divisions are the diminutive polar bodies (PB), which contain a redundant set of chromosomes/chromatids plus cytoplasmic organelles. The PB have strictly limited but differential life spans; while viable they possess the genetic potential to support normal embryonic development after transfer to a cytoplast. In addition to the theoretical possibility of using this non-cloning technique to generate more embryos, polar bodies can be used for genetic testing. By cytogenetic analysis of both PB using fluorescent in-situ hybridization (FISH) or chromosome painting, partial or full chromosomal status in the oocyte can be predicted; this approach finds particular application for women of advanced reproductive age as well as with maternally inherited translocations and single gene defects. By studying both of the PB, potential problems of interpretation arising from allele dropout can be reduced; a heterozygous first polar body provides the least ambiguous result. Mitochondria segregate randomly during meiotic cleavages providing an opportunity also to use the PB to screen for mitochondrial mutations and deletions. Thus, the PB can serve useful diagnostic purposes, especially where pre-fertilization screening or avoidance of embryo biopsy is desirable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1472-6483(10)62158-xDOI Listing

Publication Analysis

Top Keywords

polar bodies
12
oocyte biology
4
biology genetics
4
genetics revelations
4
polar
4
revelations polar
4
bodies enormous
4
enormous volume
4
volume fertilized
4
fertilized egg
4

Similar Publications

Until recently, the lack of three-dimensional visualisation of whole cells at the electron microscopic (EM) level has led to a significant gap in our understanding of the interaction of cellular organelles and their interconnection. This is particularly true with regard to the role of the endoplasmic reticulum (ER). In this study, we perform three-dimensional reconstructions of serial FIB/SEM stacks and anaglyphs derived from volume rendering, cryo-scanning electron microscopy (cryo-SEM) and state-of-the-art electron microscopy immobilisation and imaging techniques.

View Article and Find Full Text PDF

Aim: Within the in vitro fertilization (IVF) process, to evaluate the possibility of using the state of the meiotic spindle of oocytes as an indicator of maturity in order to optimize the timing of vitrification.

Patients And Methods: In the presented report, the cause of couple infertility was a combination of a 38-year-old female and 43-year-old male with azoospermia, which was an indication for oocyte vitrification. Oocyte polar bodies and optically birefringent meiotic spindles were visualized by polarized light microscopy and their states and relative positions were used as indicators of oocyte maturation, i.

View Article and Find Full Text PDF

Objective: To assess the feasibility of first polar body transfer (PB1T) combined with preimplantation mitochondrial genetic testing for blocking the transmission of a pathogenic mitochondrial DNA 8993T>G mutation.

Methods: A Chinese family affected with Leigh syndrome which had attended the Reproductive Medicine Centre of the First Affiliated Hospital of Anhui Medical University in September 2021 was selected as the study subject. Controlled ovarian hyperstimulation was carried out for the proband after completing the detection of the mitochondrial DNA 8993T>G mutation load among the pedigree members.

View Article and Find Full Text PDF

Isospora tiedetopetei n. sp. (Chromista: Apicomplexa: Eimeriidae) from black-goggled tanagers Trichothraupis melanops (Vieillot, 1818) (Passeriformes: Thraupidae: Tachyphoninae) in South America.

Parasitol Int

January 2025

Departamento de Biologia Animal, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, BR-465 km 7, 23897-000 Seropédica, Rio de Janeiro, Brazil.

Black-goggled tanagers Trichothraupis melanops (Vieillot, 1818) are passerine birds commonly observed in the Brazilian Atlantic Forest, Argentina and Paraguay. Tanagers are among the passerines with the highest prevalence and density of coccidian parasites, mainly due to their frugivorous feeding habits that favor fecal-oral transmission. In this context, the current study identifies a new species of Isospora Schneider, 1881 parasitizing black-goggled tanagers captured in the Itatiaia National Park, a protected area with a high degree of vulnerability in Southeastern Brazil.

View Article and Find Full Text PDF

Melatonin protects bovine oocyte from βHB-induced oxidative stress through the Nrf2 pathway.

Theriogenology

March 2025

Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, Jilin, China.

Accumulation of ketone bodies in the blood or tissues can trigger ketosis, exerting detrimental effects on bovine oocytes maturation. Exposure to its primary component, β-hydroxybutyric acid (βHB), disrupts mitochondrial function, culminating in the excessive buildup of reactive oxygen species (ROS) and subsequent initiation of apoptosis in oocytes. These ultimately result in poor oocyte quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!