The introduction of apomixis to crops would allow desirable genotypes to be propagated while preventing undesirable gene flow, but so far there has been little success in transferring this trait from a natural apomict to another species. One explanation is the sensitivity of endosperm to changes in relative maternal and paternal contribution owing to parental imprinting, an epigenetic system of transcriptional regulation by which some genes are expressed from only the maternally or paternally contributed allele. In sexual species, endosperm typically requires a ratio of two maternal genomes to one paternal genome for normal development, but this ratio is often altered in apomicts, suggesting that the imprinting system is altered as well. We present evidence that modification of DNA methylation is one mechanism by which the imprinting system could be altered to allow endosperm development in apomicts. Another feature of natural apomixis is the modification of the normal fertilization programme. Sexual reproduction uses both sperm from each pollen grain, but pseudogamous apomicts, which require a sexual endosperm to support the asexual embryo, often use just one. We present evidence that multiple fertilization of the central cell is possible in Arabidopsis thaliana, suggesting that pseudogamous apomicts may also need to acquire a mechanism for preventing more than one sperm from contributing to the endosperm. We conclude that strategies to transfer apomixis to crop species should take account of endosperm development and particularly its sensitivity to parental imprinting, as well as the mechanism of fertilization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693203 | PMC |
http://dx.doi.org/10.1098/rstb.2003.1298 | DOI Listing |
Curr Opin Psychiatry
December 2024
Departments of Psychiatry &, Behavioral Sciences and Pediatrics, University of Kansas Medical Centre, Kansas City, Kansas, United States.
Purpose Of Review: Prader-Willi (PWS) and Angelman (AS) syndromes arise from errors in 15q11-q13 imprinting. This review describes recent advances in genomics and how these expand our understanding of these rare disorders, guiding treatment strategies to improve patient outcomes.
Recent Findings: PWS features include severe infantile hypotonia, failure to thrive, hypogonadism, developmental delay, behavioral and psychiatric features, hyperphagia, and morbid obesity, if unmanaged.
Mol Cancer
January 2025
Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
VTRNA2-1 is a polymorphically imprinted locus. The proportion of individuals with a maternally imprinted VTRNA2-1 locus is consistently approximately 75% in populations of European origin, with the remaining circa 25% having a non-methylated VTRNA2-1 locus. Recently, VTRNA2-1 hypermethylation at birth was suggested to be a precursor of paediatric acute lymphoblastic leukaemia with biomarker potential.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
DNA methylation (DNAm) regulates gene expression and genomic imprinting. This study aimed to investigate the effect of gastrointestinal (GI) nematode infection on host DNAm. Helminth-free Holstein steers were either infected with (the brown stomach worm) or given tap water only as a control.
View Article and Find Full Text PDFGenome Med
January 2025
Laboratory of Cytogenetics and Genome Research, Centre for Human Genetics, KU Leuven, Leuven, 3000, Belgium.
Background: A subset of developmental disorders (DD) is characterized by disease-specific genome-wide methylation changes. These episignatures inform on the underlying pathogenic mechanisms and can be used to assess the pathogenicity of genomic variants as well as confirm clinical diagnoses. Currently, the detection of these episignature requires the use of indirect methylation profiling methodologies.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
Genomic imprinting, the parent-of-origin-specific gene expression, plays a pivotal role in growth regulation and is often dysregulated in cancer. However, screening for imprinting is complicated by its cell-type specificity, which bulk RNA-seq cannot capture. On the other hand, large-scale single-cell RNA-seq (scRNA-seq) often lacks transcript-level detail and is cost-prohibitive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!