That TLRs share a common MyD88-dependent signaling pathway which results in the generation of nuclear DNA-binding proteins, such as NF-kappaB, is a well-accepted paradigm. However, studies from our laboratories and others suggested that TLR4 agonists elicit a more diverse pattern of gene expression in murine macrophages than TLR2 agonists. The data presented show that activation of TLR4 by Escherichia coli LPS results in an MyD88-independent, TIRAP/Mal-dependent signaling pathway that, in turn, leads to early induction of interferon-beta (IFN-beta). IFN-beta, in turn, acts in an autocrine/paracrine fashion on the macrophage to activate STAT1-containing DNA binding complexes that participate in the induction of genes not expressed in response to natural or synthetic TLR2 agonists. These data support the hypothesis that the host response to microbes is controlled by TLRs at two levels: (i) the "sensing" of differences in microbial structures through the TLR extracellular domain; and (ii) signaling pathways that are initiated via interactions through unique intracytoplasmic regions of different TLRs with adaptor proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1179/096805103125001577DOI Listing

Publication Analysis

Top Keywords

tlr4 agonists
8
murine macrophages
8
signaling pathway
8
tlr2 agonists
8
agonists data
8
tlr2 tlr4
4
agonists
4
agonists stimulate
4
stimulate unique
4
unique repertoires
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!