A multimedia fate model with spatially resolved air and soil phases was developed and evaluated. The model was used for calculation of phenanthrene concentrations in air, water, soil, and sediment in Tianjin area and transport fluxes between the adjacent bulk phases under steady-state assumption. Both air and soil phases were divided into 3113 individual compartments of 4 km2 each to assess the spatial variation of phenanthrene concentrations and fluxes. Independently measured phenanthrene concentrations in air, water, and soil were used for model validation. The spatial variation in soil was validated using a set of measured phenanthrene concentrations of 188 surface soil samples collected from the area. Most data used either for model calculation or for model validation were collected during the last 5 years. As the results of the model validation, the calculated mean values for phenanthrene concentrations in various bulk phases are in fair agreement with those independently observed and are very close to those calculated using the model without spatial variation. The absolute difference between the calculated and the measured mean concentrations are 0.14, 0.48, and 0.13 log-units (mol/m3) for air, water, and soil, respectively. The spatial distribution patterns of phenanthrene in both air and soil were well modeled. Spatially, however, the model overestimated the soil phenanthrene level at low concentration range and underestimated it at high concentration range. The calculated distribution of phenanthrene in the air matches well with the emission from fossil fuel combustion, while the calculated distribution pattern in the soil is similar to that observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es021023b | DOI Listing |
J Environ Manage
January 2025
State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants with mutagenicity, carcinogenicity and teratogenicity, widely distributed in the environment. Effective biodegradation of PAHs is highly required, especially in wastewater. An efficient PAHs degrading strain Streptomyces sp.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmacology and Therapeutics, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda.
Tanshinones, biologically active diterpene compounds derived from , interact with specific proteins and DNA sequences, influencing signaling pathways in animals and humans. This study highlights tanshinone-protein interactions observed at concentrations achievable in vivo, ensuring greater physiological relevance compared to in vitro studies that often employ supraphysiological ligand levels. Experimental data suggest that while tanshinones interact with multiple proteomic targets, only a few enzymes are significantly affected at biologically relevant concentrations.
View Article and Find Full Text PDFSci Total Environ
February 2025
Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA; Data Observatory Foundation, Santiago, Chile. Electronic address:
Semi-volatile organic compounds (SVOCs) are widely distributed across the globe, including polar regions. This study investigates the distribution and bioconcentration of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in soils and Colobanthus quitensis, while also estimating potential emission sources. Results indicated high concentrations of PAHs in soils and plants from the Sub-Antarctic region, while OCPs and PCBs were more prevalent in the Antarctic region, with higher contaminant concentrations found in soils than in plant tissues.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Medicine, Jianghan University Wuhan 430056, China.
This study aims to investigate the mechanism of tanshinone Ⅱ_A(Tan Ⅱ_A) in protecting mice from diethylinitrosamine(DEN)/carbon tetrachloride(CCl_4)/ethanol(C_2H_5OH)-induced hepatocellular carcinoma(HCC) and HepG2 cells from hydrogen peroxide(H_2O_2)-induced oxidative damage via the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and nuclear factor E2-related factor 2(Nrf2)/heme oxygenase 1(HO-1) signaling pathways. Sixty male C57BL/6J mice were grouped as follows: control, model, low, medium, and high-dose(10, 20, 40 mg·kg~(-1), respectively) Tan Ⅱ_A, and colchicine(0.2 mg·kg~(-1)), with 10 mice in each group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!