Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the mammalian CNS, N-methyl-D-aspartate (NMDA) receptors serve prominent roles in many physiological and pathophysiological processes including pain transmission. For full activation, NMDA receptors require the binding of glycine. It is not known whether the brain uses changes in extracellular glycine to modulate synaptic NMDA responses. Here, we show that synaptically released glycine facilitates NMDA receptor currents in the superficial dorsal horn, an area critically involved in pain processing. During high presynaptic activity, glycine released from inhibitory interneurons escapes the synaptic cleft and reaches nearby NMDA receptors by so-called spillover. In vivo, this process may contribute to the development of inflammatory hyperalgesia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1083970 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!