It is difficult to over-state the importance of Zn(II) in biology. It is a ubiquitous essential metal ion and plays a role in catalysis, protein structure and perhaps as a signal molecule, in organisms from all three kingdoms. Of necessity, organisms have evolved to optimise the intracellular availability of Zn(II) despite the extracellular milieu. To this end, prokaryotes contain a range of Zn(II) import, Zn(II) export and/or binding proteins, some of which utilise either ATP or the chemiosmotic potential to drive the movement of Zn(II) across the cytosolic membrane, together with proteins that facilitate the diffusion of this ion across either the outer or inner membranes of prokaryotes. This review seeks to give an overview of the systems currently classified as altering Zn(II) availability in prokaryotes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0168-6445(03)00041-X | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, School of Chemistry and Chemical Engineering, 135 West Xingang Road, 510275, Guangzhou, CHINA.
Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
-β, β-β' trifused porphyrins incorporating two distinct active methylene groups (MN = malononitrile and IND = 1,3-indanedione) and their corresponding metal complexes with Cu(II) and Zn(II) have been synthesized with good to excellent yields and characterized by various spectroscopic techniques and spectrometric methods. Single crystal X-ray analysis of the Zn(II) complex ZnTFPMB(MN) (where TFP = trifused porphyrin and MB = mono benzo) revealed a nonplanar 'armchair' type conformation with a twist angle of 24.10°.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
New types of metal-organic framework (MOF) materials have great potential in solving the current global dilemma on energy, environment, and medical care. Herein, based on two kinds of biomolecule-MOFs (Bio-MOFs) with favorable biocompatibility and degradation-reconstruction characteristics, we have established a self-powered muti-functional device to achieve an efficient and broad-spectrum environmental energy collection and biomedical applications. Combining Zn(II) and carnosine-based Zn-Car_MOF possessing a high piezoelectric response (d = 11.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, Odisha, India.
Energy crisis and environmental pollution are two central themes of contemporary research towards achieving sustainable development goals (SDGs). Material chemistry is the chief discipline that can resolve glitches in these areas through the appropriate design of chemical compounds with multifunctional properties. In this regard, two stable coordination polymers (CPs) were synthesised in this work using Zn(II) (3d) and Cd(II) (d) metal nodes with 1,4-benzenedicarboxylate () as the bridging ligand and monodentate pyridyl-N coordinated 9-fluoren-2-yl-pyridin-4-ylmethylene-amine (flpy) as the fluorogenic partner.
View Article and Find Full Text PDFCryst Growth Des
January 2025
Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
Solid-state synthesis is an approach to organic synthesis that is desirable because it can offer minimal or no solvent waste, high yields, and relatively low energy footprints. Herein, we report the solid-state synthesis of a novel Schiff base, 4-{()-[(4-methylpyridin-3-yl)imino]methyl}benzoic acid (), synthesized through the reaction of an amine and an aldehyde. was prepared via solvent-drop (water) grinding (SDG) on a multigram scale with 97% yield and was characterized using FTIR, H NMR, and SCXRD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!