Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion.

Cardiovasc Res

Cardiothoracic Research Laboratory, The Carlyle Fraser Heart Center/Crawford Long Hospital, Emory University School of Medicine, 550 Peachtree Street NE, Atlanta, GA 30308-2225, USA.

Published: July 2003

Objective: Myocardial apoptosis is primarily triggered during reperfusion (R) through various mechanisms that may involve endonuclease to cleavage genomic DNA in the internucleosomal linker regions. However, the relative contribution of myocardial apoptosis to development of myocardial injury during R remains unknown. In the present study, we examined whether inhibition of apoptosis with aurintricarboxylic acid (ATA), an endonuclease inhibitor, during R reduces infarct size and improves regional contractile function.

Methods And Results: In two groups of chronically-instrumented dogs, 1 h of left anterior descending (LAD) coronary occlusion was followed by 24 h of R with infusion of saline (control, n=8) or ATA (1 mg/kg/h, n=8) into the left atrium starting 5 min before R and continuing for 2 h. ATA significantly reduced apoptotic cells (TUNEL staining) in the peri-necrotic myocardium (12+/-1%* vs. 36+/-4%), consistent with the absence of DNA laddering. To confirm inhibition of apoptosis with ATA, densitometrically, Bcl-2 (% of normal myocardium) was significantly increased vs. control (102+/-12* vs. 68+/-9) and Bax as well as the activated caspase-3 were significantly reduced vs. control (108+/-17* vs. 194+/-42 and -29+/-4* vs. 174+/-43, respectively). ATA significantly improved segmental shortening (3.3+/-1.2* vs. -1.8+/-0.7%) and segmental work (79.3+/-11.3* vs. 7.1+/-5.8 mmHg/mm) in area at risk myocardium, and reduced infarct size (TTC staining, 27+/-0.2* vs. 37+/-0.5%), confirmed by lower plasma creatine kinase activity. In addition, myocardial blood flow (0.9+/-0.1* vs. 0.4+/-0.1 ml/min/g) and endothelial-dependent maximal vascular relaxation (119+/-6* vs. 49+/-8%) were significantly improved. Myeloperoxidase activity in area at risk myocardium, a marker for neutrophil accumulation, was also significantly reduced (17+/-4* vs. 138+/-28 Delta Abs/min).

Conclusions: These data suggest that the inhibition of apoptosis during R is associated with a reduction in infarction, improvement in regional contractile and vascular endothelial functions as well as augmentation in myocardial blood flow. *P<0.05 vs. control group.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0008-6363(03)00344-4DOI Listing

Publication Analysis

Top Keywords

myocardial apoptosis
12
infarct size
12
regional contractile
12
inhibition apoptosis
12
reduces infarct
8
size improves
8
improves regional
8
area risk
8
risk myocardium
8
myocardial blood
8

Similar Publications

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.

View Article and Find Full Text PDF

Long non-coding RNA XR008038 promotes the myocardial ischemia/reperfusion injury development through increasing the expressions of galectin-3.

Int J Cardiol

January 2025

Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:

Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.

View Article and Find Full Text PDF

Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.

View Article and Find Full Text PDF

Introduction: Dl-3-n-butylphthalide (NBP), a small molecular compound extracted from celery seeds, has been shown to exhibit diverse pharmacological activities, including anti-inflammatory, antioxidative, and anti-apoptotic effects. Recent studies have highlighted its efficacy in treating various cardiovascular conditions, such as myocardial infarction, hypertrophy, heart failure, and cardiotoxicity. This study aimed to investigate whether NBP could alleviate cardiac dysfunction and injury following hemorrhage-induced cardiac arrest (HCA) in a porcine model and elucidate its potential mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!