Multiple sclerosis is characterized by multiple lesions with selective loss of myelin and oligodendrocytes, leading to deficits of sensation and movement, as well as cognitive disabilities. Consequently, a major research endeavor is to identify strategies to enhance oligodendrocyte regeneration and remyelination. FGF-2 is a potent mitogen for OPCs, and it is induced in astrocytes in animal models of demyelinating diseases in conjunction with successful remyelination. However, the factors responsible for inducing FGF-2 after demyelination in astrocytes are unknown. Here we show that CNTF mRNA and protein increase coincident with spinal cord remyelination in mice recovering from MHV-induced demyelination. We identify CNTF within astrocytes surrounding and within remyelinating lesions, and show that CNTF increases FGF-2 ligand and receptor mRNAs in spinal cord after direct application. Furthermore, we show that CNTF increases FGF-2 mRNA approximately 2.5-fold in cultured mouse spinal cord astrocytes. Altogether, these results strongly implicate CNTF as an important cytokine in demyelinating disease and as an upstream regulator of FGF-2 production in astrocytes during early remyelination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0969-9961(03)00019-6DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
fgf-2 production
8
cntf increases
8
increases fgf-2
8
astrocytes
6
cntf
6
fgf-2
6
remyelination
5
astrocytes produce
4
produce cntf
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!