In Saccharomyces cerevisiae, the synthesis of inositol pyrophosphates is essential for vacuole biogenesis and the cell's response to certain environmental stresses. The kinase activity of Arg82p and Kcs1p is required for the production of soluble inositol phosphates. To define physiologically relevant targets of the catalytic products of Arg82p and Kcs1p, we used DNA microarray technology. In arg82delta or kcs1delta cells, we observed a derepressed expression of genes regulated by phosphate (PHO) on high phosphate medium and a strong decrease in the expression of genes regulated by the quality of nitrogen source (NCR). Arg82p and Kcs1p are required for activation of NCR-regulated genes in response to nitrogen availability, mainly through Nil1p, and for repression of PHO genes by phosphate. Only the catalytic activity of both kinases was required for PHO gene repression by phosphate and for NCR gene activation in response to nitrogen availability, indicating a role for inositol pyrophosphates in these controls. Arg82p also controls expression of arginine-responsive genes by interacting with Arg80p and Mcm1p, and expression of Mcm1-dependent genes by interacting with Mcm1p. We show here that Mcm1p and Arg80p chaperoning by Arg82p does not involve the inositol polyphosphate kinase activity of Arg82p, but requires its polyaspartate domain. Our results indicate that Arg82p is a bifunctional protein whose inositol kinase activity plays a role in multiple signalling cascades, and whose acidic domain protects two MADS-box proteins against degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2958.2003.03562.x | DOI Listing |
Cardiovasc Toxicol
January 2025
The Second Department of Cardiovascular Medicine, Baoji People's Hospital, Baoji, China.
Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFVirol J
January 2025
Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518118, China.
Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.
View Article and Find Full Text PDFCommun Biol
January 2025
Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!