The capabilities of National Metrology Institutes (NMIs-those which are members of the Comité Consultatif pour la Quantité de Matière (CCQM)of the CIPM) and selected outside "expert" laboratories to quantitate (C(4)H(9))(3)Sn(+) (TBT) in a prepared marine sediment were assessed. This exercise was sanctioned by the 7th CCQM meeting, April 4-6, 2001, as an activity of the Inorganic Analysis Working Group and was jointly piloted by the Institute for National Measurement Standards of the National Research Council of Canada (NRC) and the Laboratory of the Government Chemist (LGC), UK. A total of 11 laboratories submitted results (7 NMIs, and 4 external labs). Two external laboratories utilized a standard calibration approach based on a natural abundance TBT standard, whereas all NMIs relied upon isotope dilution mass spectrometry for quantitation. For this purpose, a species specific (117)Sn-enriched TBT standard was supplied by the LGC. No sample preparation methodology was prescribed by the piloting laboratories and, by consequence, a variety of approaches was adopted by the participants, including mechanical shaking, sonication, accelerated solvent extraction, microwave assisted extraction and heating in combination with Grignard derivatization, ethylation and direct sampling. Detection techniques included ICP-MS (with GC and HPLC sample introduction), GC-MS, GC-AED and GC-FPD. Recovery of TBT from a control standard (NRCC CRM PACS-2 marine sediment) averaged 93.5+/-2.4% ( n=14). Results for the pilot material averaged 0.680+/-0.015 micro mol kg(-1) ( n=14; 80.7+/-1.8 micro g kg(-1)) with a median value of 0.676 micro mol kg(-1). Overall, performance was substantially better than state-of-the-art expectations and the satisfactory agreement amongst participants permitted scheduling of a follow-up Key comparison for TBT (K-28), a Pilot intercomparison for DBT (P-43), and certification of the test sediment for TBT content and its release as a new Certified Reference Material (HIPA-1) with a TBT content of 0.679+/-0.089 micro mol kg(-1) (expanded uncertainty, k=2, as Sn) (80.5+/-10.6 micro g kg(-1)).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-003-2016-9 | DOI Listing |
Environ Monit Assess
January 2025
Department of Earth Science, University of Bizerte-FSB, University of Carthage, 7120, Bizerte, Tunisia.
The Ichkeul-Bizerte Lagoon Complex (IBLC), a critical ecosystem for local biodiversity, faces a pressing threat due to climate change and severe pollution. Despite past conservation efforts, pollution persists, particularly in the Bizerte Lagoon. This study investigated the impact of water dynamics and climatic conditions on heavy metal contamination in the IBLC's sediments.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
The riverine NO fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF is poorly constrained, which impedes the NO estimation and mitigation. Our meta-analysis discovered a universal NO emission baseline (EF = k/[NO ], k = 0.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
Basecamp Research Ltd, Unit 510 Clerkenwell Workshops, 27 Clerkenwell Close, London, EC1R 0AT, UK.
Background: Despite being recognised as a global problem, our understanding of human-mediated antimicrobial resistance (AMR) spread to remote regions of the world is limited. Antarctica, often referred to as "the last great wilderness", is experiencing increasing levels of human visitation through tourism and expansion of national scientific operations. Therefore, it is critical to assess the impact that these itinerant visitors have on the natural environment.
View Article and Find Full Text PDFSci Rep
January 2025
College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
Poplar (Populus simoni) plantations are crucial in the sandy regions of western Liaoning, serving key roles in wind protection, sand stabilization, soil moisture regulation, and carbon sequestration. However, challenges such as suboptimal stand quality and limited ecological benefits persist. This study aims to elucidate the growth dynamics of poplar plantations and their impact on soil moisture content and soil carbon content in this region.
View Article and Find Full Text PDFNat Commun
January 2025
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
Settling aggregates transport organic matter from the ocean surface to the deep sea and seafloor. Though plankton communities impact carbon export, how specific organisms and their interactions affect export efficiency is unknown. Looking at 15 years of eDNA sequences (18S-V4) from settling and sedimented organic matter in the Fram Strait, here we observe that most phylogenetic groups were transferred from pelagic to benthic ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!