It has been shown that methionine depletion inhibits tumor cell growth and reduces tumor cell survival. A novel fusion protein targeted specifically to tumor cells was developed. The fusion protein contained two components: the amino terminal fragment of human urokinase (amino acids 1-49) that binds to the urokinase receptor protein expressed on the surface of invasive cancer cells, and the enzyme L-methioninase (containing 398 amino acids) which depletes methionine and arrests the growth of methionine-dependent tumors. The influence of the fusion protein on the growth and motility of human breast cancer cells was examined using a culture wounding assay. It was determined that MCF-7 breast cancer cells, used in this study, were methionine-dependent and that the fusion protein bound specifically to urokinase receptors of the surface of the cancer cells. Further treatment of the cancer cells with fusion protein over the concentration range 10(-8) to 10(-6) M produced a dose-dependent inhibition of both the migration and proliferation index of MCF-7 cells in the culture wounding assay over a period of 1 to 3 days. The results of this study suggest that this novel fusion protein may serve as a prototype for specific targeting of methioninase and perhaps other cytotoxic agents to cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00280-003-0666-0 | DOI Listing |
Nucleic Acids Res
January 2025
Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA.
Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).
View Article and Find Full Text PDFElife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
IPMC, UMR7275 CNRS-UniCA, INSERM U1323, team certified "Laboratory of Excellence (LABEX) Distalz", Valbonne, France.
Emerging evidence indicates that autophagy is tightly connected to the endocytic pathway. Here, we questioned the role of presenilins (PSENs 1 and 2), previously shown to be involved in autophagy regulation, in the secretion of small endocytic-originating extracellular vesicles known as exosomes. Indeed, while wild-type cells responded to stimuli promoting both multivesicular endosome (MVE) formation and secretion of small extracellular vesicles (sEVs) enriched in canonical exosomal proteins, PSEN-deficient cells were almost unaffected to these stimuli.
View Article and Find Full Text PDFDiagn Pathol
January 2025
Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
Background: Perivascular epithelioid cell tumors (PEComas) rarely appear in the head and neck region. This case report describes two transcription factor E3 (TFE3)-rearranged PEComa cases, consisting of one in the orbit and one in the nasal cavity.
Case Presentation: Both cases demonstrated sheet-like or focal nested architecture and comprised epithelioid cells with abundant clear to eosinophilic cytoplasm and vascular stroma.
Commun Biol
January 2025
CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France.
We have assessed antiviral activity and induction of protective immunity of fusion-inhibitory lipopeptides derived from the C-terminal heptad-repeat domain of SARS-CoV-2 spike glycoprotein in transgenic mice expressing human ACE2 (K18-hACE2). The lipopeptides block SARS-CoV-2 infection in cell lines and lung-derived organotypic cultures. Intranasal administration in mice allows the maintenance of homeostatic transcriptomic immune profile in lungs, prevents body-weight loss, decreases viral load and shedding, and protects mice from death caused by SARS-CoV-2 variants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!