Roles of periosteum, dura, and adjacent bone on healing of cranial osteonecrosis.

J Craniofac Surg

Department of Plastic and Reconstructive Surgery, Research and Training Centers, Baskent University, Adana, Turkey.

Published: May 2003

It has been reported that large cranial osteonecrotic areas can heal. It was hypothesized that optimal healing is possible by the synchronized contribution of the osteogenic structures (periosteum, dura, and adjacent bone) that envelop the necrotic cranium. This hypothesis was tested by preserving or isolating the contribution of these osteogenic tissues. A total of 37 4-old-month rats were included in the study. Twelve animals were killed immediately, and cranial bone samples were taken and processed for examination (from 6 animals as fresh samples [Group A] and from the rest as autoclaved samples [Group B]). Group B was created to test if the bone was completely nonviable. In Group C (n = 25), cranial bone disks 8 mm in diameter were taken from 4-month-old rats, autoclaved, and put back onto the defect area. This group was further divided into the four Subgroups C1 through C4 (n = 7 in C3; n = 6 in C1, C2, and C4). Dura mater was isolated from the overlying bone disk with a polytetrafluoroethylene sheet in Subgroups C1 and C2, whereas the bone contacted the dura in the rest. The bone samples were covered with healthy periosteum in Subgroups C1 and C3 and with skin in Subgroups C3 and C4. These animals were killed after a healing period of 12 weeks, and the relevant bone disks were obtained. Surrounding healthy bone was also harvested from the same animals after they were killed to create Group D. The data of Group A and D were compared with those of the experimental group to comment on the degree of bone healing in the latter group. Quantitative and qualitative assessment was performed by mammography, bone densitometry, computed tomography, and histological examinations to find out the density and cellular content (osteocytes and vessels) of the samples. Examination of Group B samples showed nonviable tissue with a preserved microstructure. Analysis of other samples showed that both the periosteum and, mainly, the dura play an important role in cranial bone healing. The periosteal reaction was observed to be more evident when the dura was not separated. Cellular repopulation was more evident when both structures contributed to the healing process. Newly formed bone progressed centripetally; however, adjacent bone without the support of the dura and periosteum was capable of producing limited neovascularization and bone formation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001665-200305000-00016DOI Listing

Publication Analysis

Top Keywords

bone
16
periosteum dura
12
adjacent bone
12
bone healing
12
animals killed
12
cranial bone
12
dura adjacent
8
contribution osteogenic
8
bone samples
8
samples [group
8

Similar Publications

Background: The lack of predictive biomarkers contributes notably to the poor outcomes of patients with pancreatic ductal adenocarcinoma (PDAC). Cancer-associated fibroblasts (CAFs) are the key components of the prominent PDAC stroma. Data on clinical relevance of CAFs entering the bloodstream, known as circulating CAFs (cCAFs) are scarce.

View Article and Find Full Text PDF

Background: In low and middle-income countries like Ghana, out-of-pocket (OOP) payments remain a significant barrier to healthcare access, often leading to catastrophic health expenditures (CHE). This study evaluates the incidence of CHE among patients treated for long bone fractures at Ghana's major teaching hospitals, providing insight into the economic burdens faced by these patients.

Methods: This cross-sectional study analyzed data from 2,980 patients with long bone fractures treated at four major teaching hospitals in Ghana from July 2017 to July 2020.

View Article and Find Full Text PDF

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

Purpose: Identifying patients who may benefit from multiple drilling are crucial. Hence, the purpose of the study is to utilize radiomics and deep learning for predicting no-collapse survival in patients with femoral head osteonecrosis.

Methods: Patients who underwent multiple drilling were enrolled.

View Article and Find Full Text PDF

Clinical characteristics and removal of broken burs retained in the lower jaw.

BMC Oral Health

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Background: A broken bur retained in the lower jaw is an uncommon complication that occurs during the extraction of the impacted mandibular third molar. The purpose of this retrospective study was to investigate the clinical characteristics of the broken burs and review our experience with the removal of the broken burs in these cases.

Methods: All patients, who suffered the broken bur remained in the lower jaw due to the extraction of the impacted mandibular third molar and presented to our hospital from July 2019 to July 2024, were included in this retrospective study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!