As a result of multiple transcription initiation sites and differential splicing involving the first exons and alternate exon use, many insulin-like growth factor I (IGF-I) mRNA species are produced. In the present study, we have assessed the effect of GH on transcription start site usage and splicing and have determined the apparent in vivo translatability of IGF-I mRNAs with different 5'-untranslated region (UTR) sequences by comparing their abundance in total and polysomal RNA fractions from control, hypophysectomized, and GH-treated hypophysectomized rats. Hypophysectomy decreased the level of all IGF-I mRNA species, but those initiated at start site 3 in exon 1 and the major start site in exon 2 were preferentially reduced. These same variants were preferentially increased by GH treatment. Under all conditions, exon 1 mRNAs with shorter 5'-UTR sequences were enriched in polysomal RNA at the expense of IGF-I mRNAs with long 5'-UTR sequences, in accordance with the scanning model of translation initiation. Exon 2-derived mRNAs, on the other hand, which have short 5'-UTR sequences, were not enriched on polysomes, suggesting that some aspect of the exon 2-derived 5'-UTR other than length influences translation in vivo. These results demonstrate that transcription within exon 1 and between exons 1 and 2 is differentially regulated by GH status and that the variant IGF-I mRNA species resulting from the complex patterns of transcription initiation and splicing in these leader exons are differentially translated in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/mend.6.11.1282673 | DOI Listing |
Int J Mol Sci
January 2025
Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
Insulin receptor substrates (IRSs) are well-known mediators of the insulin and insulin-like growth factor (IGF)-I signaling pathways. We previously reported that the protein levels of IRS-2, a molecular species of IRS, were upregulated in the livers of rats fed a protein-restricted diet. This study aimed to elucidate the physiological role of IRS-2, whose level increases in response to protein restriction in cultured hepatocyte models.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Insulin-like growth factor-1 (IGF-1) plays a vital role in various cellular processes, including those involving stem cells. This study evaluated the effects of IGF-1 on cell survival, osteogenic differentiation, and mRNA expression in gingiva-derived mesenchymal stem cell spheroids. Using concave microwells, spheroids were generated in the presence of IGF-1 at concentrations of 0, 10, and 100 ng/mL.
View Article and Find Full Text PDFMol Med Rep
March 2025
Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece.
Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China.
: Cultivated meat, an alternative to conventional meat, has substantial potential for alleviating environmental and ethical concerns. This method of manufacturing meat involves the isolation of skeletal muscle satellite cells (SMSCs) from donor animals, after which they proliferate in vitro and differentiate into primitive muscle fibers. The aim of this research was to evaluate how the insulin-like growth factor 1 (IGF1) gene regulates the myogenic differentiation of bovine skeletal muscle satellite cells (bSMSCs).
View Article and Find Full Text PDFSci Rep
January 2025
Departments of Ophthalmology, Sapporo Medical University School of Medicine, S-1 W-16, Chuo-Ku, Sapporo, 060-8543, Japan.
To elucidate the role of IGF1R inhibition in the pathogenesis of Graves' orbitopathy (GO), the effects of linsitinib (Lins) on a recombinant human TSHR antibody (M22) and IGF1 to activate TSHR and IGF1R of human orbital fibroblasts (HOFs) obtained from patients without GO (HOFs) and patients with GO (GHOFs) were studied using in vitro three-dimensional (3D) spheroid models in addition to their 2D planar cell culture. For this purpose, we evaluated 1) cellular metabolic functions by using a seahorse bioanalyzer (2D), 2) physical properties including size and stiffness of 3D spheroids, and mRNA expression of several extracellular matrix (ECM) proteins, their modulators (CCL2 LOX, CTGF, MMPs), ACTA2 and inflammatory cytokines (IL1β, IL6). Administration of IGF1 and M22 induced increases of cellular metabolic functions with the effect on HOFs being much more potent than the effect on GHOFs, suggesting that IGF1R and TSHR of GHOFs may already be stimulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!