A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. | LitMetric

Platinum anticancer drugs, such as cisplatin, are thought to exert their activity by DNA damage. Oxaliplatin, a clinically active diaminocyclohexane platinum compound, however, requires fewer DNA-Pt adducts than cisplatin to achieve cell growth inhibition. Here we investigated whether secondary DNA damage and apoptotic responses to oxaliplatin compensate for the reduced formation of DNA adducts. Oxaliplatin treatment of leukemic CEM and ovarian A2780 cancer cells resulted in early (4 hr) induction of DNA single-strand breaks measured by nucleoid sedimentation. These infrequent early lesions progress with time into massive double-stranded DNA fragmentation (fragments >50k bp) paralleled by characteristic apoptotic changes revealed by cell morphology and multivariate flow cytometry. Profound oxaliplatin-induced apoptotic DNA fragmentation was detectable following a 24 hr treatment of A2780 and CEM cells with 2 and 10 microM oxaliplatin, respectively. This DNA fragmentation was inhibited completely by the broad-spectrum caspase inhibitor Z-VAD-fmk. Cisplatin, which forms markedly more DNA-Pt adducts in CEM and A2780 cells than equimolar oxaliplatin, was similarly potent as oxaliplatin in terms of early strand breaks and later apoptotic responses. Oxaliplatin was also profoundly apoptotic in several other tumor cell lines of prostate origin but had only a marginal effect in normal prostate PrEC cells. Collectively, the results demonstrate that, relative to the magnitude of the primary DNA-Pt lesions, oxaliplatin is disproportionately more potent than cisplatin in the induction of apoptosis. Apoptosis induction, possibly enhanced by a contribution of targets other than DNA, seems to be an important factor in the mechanism of action of oxaliplatin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-2952(03)00260-0DOI Listing

Publication Analysis

Top Keywords

dna fragmentation
12
oxaliplatin
10
dna
9
strand breaks
8
cancer cells
8
dna damage
8
dna-pt adducts
8
apoptotic responses
8
responses oxaliplatin
8
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!