Background: Photoreceptor (PR) and retinal pigment epithelium (RPE) are the principal cell targets in retinal gene therapy. Recombinant adeno-associated virus (rAAV) has emerged as a very promising vector for gene therapy in hereditary retinal diseases. Gene transfer at different stages of the disease is a practical consideration for future clinical application.

Methods: A rAAV carrying the enhanced green fluorescent protein gene driven by a cytomegalovirus promoter was produced by either co-infecting the 293 cell line with E1-defective adenovirus and purified by CsCl(2) density gradient (CsCl(2)-rAAV), or by transfecting with an adenoviral helper plasmid and purified by iodixanol density gradient followed by heparin column chromatography (heparin-rAAV). The impact of different virus preparations on the patterns of transgene expression was investigated after subretinal injection. Furthermore, rAAV-mediated gene transfer was evaluated at both early and advanced stages of retinal degeneration in four disease models including the RCS rat, rd, RPE(65) (-)/(-) and cathepsin D mutant mice that are associated with PR- or RPE-related gene defects.

Results: CsCl(2)-rAAV predominantly transduced RPE and with less efficiency in PR. In contrast, heparin-rAAV predominantly transduced PR but with much less efficiency in RPE. Subretinal injection of either rAAV preparation induced no changes to retinal morphology and retinal-choroidal vasculature. The product of transgene, however, could be observed in multiple tracts in the brain. In the four disease models, target cells were efficiently transduced not only at the early stage, but also at the late stage of disease as long as the target cells were present.

Conclusions: Different preparations of rAAV have an impact on the patterns of transgene expression after subretinal injection. Patients at advanced stages of retinal degeneration may still benefit from rAAV-mediated gene therapy. The possible side effects of transgenic products on the central nervous system should be carefully monitored once therapeutic genes are employed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.375DOI Listing

Publication Analysis

Top Keywords

gene transfer
12
gene therapy
12
subretinal injection
12
recombinant adeno-associated
8
gene
8
density gradient
8
patterns transgene
8
transgene expression
8
raav-mediated gene
8
advanced stages
8

Similar Publications

Comparative organelle genomics in Daphniphyllaceae reveal phylogenetic position and organelle structure evolution.

BMC Genomics

January 2025

State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.

The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc.

View Article and Find Full Text PDF

The first complete mitochondrial genome of Sumatran striped rabbit Nesolagus netscheri (Schlegel, 1880), and its phylogenetic relationship with other Leporidae.

Sci Rep

January 2025

Department of Biology, Faculty of Mathematics and Natural Science, University of Sriwijaya, Jalan Raya Prabumulih Km 32, Ogan Ilir, South Sumatera, 30682, Indonesia.

Nesolagus netscheri, a Sumatran striped rabbit, is one of the rarest rabbits in the Leporidae family, and its genetic information is still limited. This study provides the first mitochondrial genome and molecular systematic characterization of the Sumatran striped rabbit, Nesolagus netscheri, Indonesia's rarest rabbit. It consists of a circular double-stranded DNA of 16,709 bp.

View Article and Find Full Text PDF

Development of a StIW111C-based bioresponsive pore-forming conjugate for permeabilizing the endosomal membrane.

Int J Biol Macromol

January 2025

Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:

Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.

View Article and Find Full Text PDF

Filtering through AAV Capsid Libraries for Effective Kidney Gene Transfer.

Kidney Int

January 2025

Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Veterans Affairs, Nashville, TN 37235. Electronic address:

View Article and Find Full Text PDF

Microplastics mediates the spread of antimicrobial resistance plasmids via modulating conjugal gene expression.

Environ Int

January 2025

Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford OX1 3RE, United Kingdom. Electronic address:

Antimicrobial resistance (AMR) and environmental degradation are existential global public health threats. Linking microplastics (MPs) and AMR is particularly concerning as MPs pollution would have significant ramifications on controlling of AMR; however, the effects of MPs on the spread and genetic mechanisms of AMR bacteria remain unclear. Herein, we performed Simonsen end-point conjugation to investigate the impact of four commonly used MPs on transfer of clinically relevant plasmids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!