Heat stability of the lyophilized Sabin poliovaccine.

Jpn J Infect Dis

Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.

Published: April 2003

In this study we lyophilized three types of live attenuated polioviruses (Sabin vaccine strains) and evaluated the lyophilized vaccine viruses' heat stability. The virus titers were measured after heating at 37 and 45 and then compared with the titers of conventional liquid vaccine viruses similarly treated. The results showed that lyophilization, while slightly reducing vaccine virus titers, had a far greater sparing effect on subsequent heat inactivation of lyophilized vaccine viruses, thus demonstrating its validity for the improvement of the vaccine.

Download full-text PDF

Source

Publication Analysis

Top Keywords

heat stability
8
lyophilized vaccine
8
virus titers
8
vaccine viruses
8
vaccine
6
lyophilized
4
stability lyophilized
4
lyophilized sabin
4
sabin poliovaccine
4
poliovaccine study
4

Similar Publications

The controlled growth of two-dimensional (2D) perovskite atop three-dimensional (3D) perovskite films reduces interfacial recombination and impedes ion migration, thus improving the performance and stability of perovskite solar cells (PSCs). Unfortunately, the random orientation of the spontaneously formed 2D phase atop the pre-deposited 3D perovskite film can deteriorate charge extraction owing to energetic disorder, limiting the maximum attainable efficiency and long-term stability of the PSCs. Here, we introduce a meta-amidinopyridine ligand and the solvent post-dripping step to generate a highly ordered 2D perovskite phase on the surface of a 3D perovskite film.

View Article and Find Full Text PDF

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

An Extensive Study of an Eco-Friendly Fireproofing Process of Lignocellulosic × Particles and Their Application in Flame-Retardant Panels.

Polymers (Basel)

January 2025

Laboratory of Physical Chemistry of Materials (LCPM), Campus Fanar, Faculty of Sciences II, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon.

Increasing the flame retardancy of lignocellulosic materials such as × can effectively enable their wide use. This study examines the fireproofing process of Miscanthus particles using an eco-friendly process by grafting phytic acid and urea in aqueous solution. Miscanthus particles underwent a steam explosion step before being grafted.

View Article and Find Full Text PDF

This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!