Animal models of osteonecrosis of the femoral head are indispensable to the understanding of successful treatment modalities for avascular necrosis of the femoral head in adults and in children with Legg-Calvé-Perthes disease. Many of these models adequately reflect the current "vascular deprivation" theory regarding the etiology of the disease. In addition to spontaneous occurrence, surgical- and corticosteroid-induced models are suitable, common experimental ones. Osteonecrosis of spontaneously hypertensive rats appears to be due to defective bone formation and compression of the arteries entering the femoral head at its lateral facets by daily weight-bearing loads. Successful modeling of surgical-induced femoral capital necrosis can be a challenge in animals with a dual epiphyseal blood supply. High doses of corticosteroids are a pivotal risk factor in the development of osteonecrosis. The pathogenesis of corticosteroid-induced osteonecrosis likely resides in reduced blood flow. Steroids may reduce blood flow by numerous mechanisms, including marrow adipocytic hypertrophy leading to sinusoidal compression, venous stasis and, eventually, obstruction of the arteries, and arterial occlusion by fat emboli and lipid-loaded fibrin-platelet thrombi. Other, less common varieties of osteonecrosis include those secondary to endotoxin-induced disseminated intravascular coagulation, immune reactions, immoderately low or high temperatures, and high-impact-related injuries. Common to these diverse forms of osteonecrosis are fibrin thrombi clogging arterioles and small arteries.

Download full-text PDF

Source
http://dx.doi.org/10.1354/vp.40-4-345DOI Listing

Publication Analysis

Top Keywords

femoral head
16
osteonecrosis
8
osteonecrosis femoral
8
blood flow
8
head
4
head laboratory
4
laboratory animals
4
animals lessons
4
lessons learned
4
learned comparative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!