Crystal structure of a phosphatase with a unique substrate binding domain from Thermotoga maritima.

Protein Sci

Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Published: July 2003

We have determined the crystal structure of a phosphatase with a unique substrate binding domain from Thermotoga maritima, TM0651 (gi 4981173), at 2.2 A resolution by selenomethionine single-wavelength anomalous diffraction (SAD) techniques. TM0651 is a member of the haloacid dehalogenase (HAD) superfamily, with sequence homology to trehalose-6-phosphate phosphatase and sucrose-6(F)-phosphate phosphohydrolase. Selenomethionine labeled TM0651 crystallized in space group C2 with three monomers per asymmetric unit. Each monomer has approximate dimensions of 65 x 40 x 35 A(3), and contains two domains: a domain of known hydrolase fold characteristic of the HAD family, and a domain with a new tertiary fold consisting of a six-stranded beta-sheet surrounded by four alpha-helices. There is one disulfide bond between residues Cys35 and Cys265 in each monomer. One magnesium ion and one sulfate ion are bound in the active site. The superposition of active site residues with other HAD family members indicates that TM0651 is very likely a phosphatase that acts through the formation of a phosphoaspartate intermediate, which is supported by both NMR titration data and a biochemical assay. Structural and functional database searches and the presence of many aromatic residues in the interface of the two domains suggest the substrate of TM0651 is a carbohydrate molecule. From the crystal structure and NMR data, the protein likely undergoes a conformational change upon substrate binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323937PMC
http://dx.doi.org/10.1110/ps.0302703DOI Listing

Publication Analysis

Top Keywords

crystal structure
12
substrate binding
12
structure phosphatase
8
phosphatase unique
8
unique substrate
8
binding domain
8
domain thermotoga
8
thermotoga maritima
8
active site
8
tm0651
5

Similar Publications

The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical.  A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical.  This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.

View Article and Find Full Text PDF

Convergent-beam attosecond x-ray crystallography.

Struct Dyn

January 2025

Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.

View Article and Find Full Text PDF

The degradation of methylene blue dye-contaminated wastewater via photocatalysis is an efficient approach towards environmental remediation. The SrZrO perovskite photocatalyst was synthesized using the modified Pechini sol-gel method, and characterized using XRD, FESEM, FTIR, and UV-visible spectrophotometer. Crystallite size obtained by the Scherrer and Williamson-Hall methods were 45.

View Article and Find Full Text PDF

Domino Knoevenagel-cyclization reactions of styrene substrates, containing an -(-formyl)aryl subunit, were carried out with -substituted 2-cyanoacetamides to prepare tetrahydro-4-pyrano[3,4-]quinolone and hexahydrobenzo[]phenanthridine derivatives by competing IMHDA and IMSDA cyclization, respectively. The diastereoselective IMHDA step with α,β-unsaturated amide, thioamide, ester and ketone subunits as a heterodiene produced condensed chiral tetrahydropyran or thiopyran derivatives, which in the case of Meldrum's acid were reacted further with amine nucleophiles in a multistep domino sequence. In order to simplify the benzene-condensed tricyclic core of the targets and get access to hexahydro-1-pyrano[3,4-]pyridine derivatives, a truncated substrate was reacted with cyclic and acyclic active methylene reagents in diastereoselective Knoevenagel-IMHDA reactions to prepare novel condensed heterocyclic scaffolds.

View Article and Find Full Text PDF

Skin aging is one of the degenerative processes influenced by tyrosinase, elastase, collagenase, hyaluronidase, and matrix metalloproteinase-9 (MMP9) activity. One promising avenue for discovering antiaging therapeutics is the peptides from the spine. The aim of this study was to explore the potential of peptides from spine as a multitarget inhibitor for recombinant antiaging therapies through in silico approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!