Fibronectin (FN), a large dimeric glycoprotein, functions primarily as a connecting molecule in the extracellular matrices of tissues by mediating both cell-matrix and matrix-matrix interactions. All members of the FN family are products of a single FN gene; heterogeneity arises from the alternative splicing of at least three regions (IIIB, IIIA, and V) during processing of a common primary transcript. During chick embryonic limb chondrogenesis, FN structure changes from B+A+ in precartilage mesenchyme to B+A- in differentiated cartilage, and exon IIIA has been shown to be necessary for the process of mesenchymal cellular condensation, a requisite event that precedes overt expression of chondrocyte phenotype. This study aims to investigate the mechanistic action of the FN isoforms in mesenchymal chondrogenesis and, in particular, to identify the specific cellular function in mesenchymal condensation mediated by the mesenchymal (B+A+) FN isoform. Full-length cDNAs corresponding to four splice variants (B+A+, B+A-, B-A+, B-A-) of FN were constructed, and expressed the corresponding proteins using a baculovirus expression vector system. Cell adhesion assays with purified proteins showed that, although the relative levels of cell attachment were approximately the same, chick limb-bud mesenchymal cells spread up to 40 % less on mesenchymal (B+A+) FN than on cartilage (B+A-) FN, (B-A+) FN, or plasma (B-A-) FN. Cellular condensation and chondrogenic differentiation were also promoted in high-density micromass cultures of limb mesenchymal cells plated onto B+A+ FN. These observations suggest that the process of mesenchymal condensation is mediated at least in part by the enhanced ability of chondrogenic mesenchymal cells to migrate and aggregate as a consequence of residing in and interacting with mesenchymal FN. Our findings are consistent with and provide a mechanistic basis for previous observations that rounding of limb mesenchymal cells precedes the onset of chondrogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1432-0436.2003.7104502.x | DOI Listing |
Int J Surg
January 2025
Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Background: Exosomes, which carry bioactive RNAs, proteins, lipids, and metabolites, have emerged as novel diagnostic markers and therapeutic agents for heart failure (HF). This study aims to elucidate the trends, key contributors, and research hotspots of exosomes in HF.
Methods: We collected publications related to exosomes in HF from the Web of Science Core Collection.
Int J Surg
January 2025
Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.
Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.
Cell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFThyroid
January 2025
Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Republic of Korea.
Although patients with anaplastic thyroid cancer (ATC) generally have a poor prognosis and there are currently no effective treatment options, survival and response to therapy vary between patients. Genomic and transcriptomic profiles of ATC have been reported; however, a comprehensive study of the tumor microenvironment (TME) of ATC is still lacking. This study aimed to elucidate the TME characteristics associated with ATC and their prognostic implications.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Cancer Biology and Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States.
Extracellular vesicles (EVs) are generated in all cells. Systemic administration of allogenic EVs derived from epithelial and mesenchymal cells has been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cell-derived EVs can be modified to acquire the capacity to induce an immune response, we engineered 293T EVs to harbor the immunomodulatory molecules CD80, OX40L, and PD-L1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!