Propylene polymerization using unsymmetrical, ansa-metallocene complexes Me(2)Y(Ind)CpMMe(2) (Y = Si, C, M = Zr, Y = C, M = Hf) and the co-initiators methyl aluminoxane (PMAO), B(C(6)F(5))(3), and [Ph(3)C][B(C(6)F(5))(4)] was studied at a variety of propylene concentrations. Modeling of the polymer microstructure reveals that the catalysts derived from Me(2)Si(Ind)CpZrMe(2) and each of these co-initiators function under conditions where chain inversion is much faster than propagation (Curtin-Hammett conditions). Surprisingly, the microstructure of the PP formed was essentially unaffected by the nature of the counterion, suggesting similar values for the fundamental parameters inherent to two-state catalysts. The tacticity of PP was sensitive to changes in [C(3)H(6)] in the case of catalysts derived from Me(2)C(Ind)CpHfMe(2) and PMAO, or [Ph(3)C][B(C(6)F(5))(4)], but the average tacticity of the polymer produced at a given [C(3)H(6)] decreased in the order [Ph(3)C][B(C(6)F(5))(4)] > PMAO. With B(C(6)F(5))(3), the polymer formed was more stereoregular, and its microstructure was invariant to changes in monomer concentration. The PP pentad distributions in this case could be modeled by assuming that all three catalyst/cocatalyst combinations function with different values for the relative rates of insertion to inversion (Delta) but otherwise feature essentially invariant, intrinsic stereoselectivity for monomer insertion (alpha, beta), while the relative reactivity/stability (g/K) of the isomeric ion-pairs present seems to be only modestly affected, if at all. Similar conclusions can also be made about the published propylene polymerization behavior of the C(s)-symmetric Me(2)C(Flu)CpZrMe(2) complex with different counterions. For every counterion investigated, the principle difference appears to be the operating regime (Delta) rather than intrinsic differences in insertion stereoselectivity (alpha). Surprisingly, the ordering of the various counterions with respect to Delta does not agree with commonly accepted ideas about their coordinating ability. In particular, catalysts when activated with B(C(6)F(5))(3) appear to function at low values of Delta as compared to those featuring B(C(6)F(5))(4) (less coordinating) and FAl[(o-C(6)F(5))C(6)F(4)](3) (more coordinating) or PMAO (more coordinating) counterions where the ordering in Delta is MeB(C(6)F(5))(3) < B(C(6)F(5))(4) < FAl[(o-C(6)F(5))C(6)F(4)](3) approximately PMAO. Possible reasons for this behavior are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0207706 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Bottlebrush block polymers, characterized by densely grafted side chains extending from a backbone, have recently garnered significant attention. A particularly attractive feature is the accessibility of ordered morphologies with domain spacings exceeding several hundred nanometers, a capability that is challenging to achieve with linear polymers. These large morphologies make bottlebrush block polymers promising for various applications, such as photonic crystals.
View Article and Find Full Text PDFSci Rep
January 2025
Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
Spermatogenesis is one of the most complex processes of cell differentiation and its failure is a major cause of male infertility. Therefore, a proper model that recapitulates spermatogenesis in vitro has been long sought out for basic and clinical research. Testis organ culture using the gas-liquid interphase method has been shown to support spermatogenesis in mice and rats.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China.
As integrated circuits have developed towards the direction of complexity and miniaturization, there is an urgent need for low dielectric constant materials to effectively realize high-fidelity signal transmission. However, there remains a challenge to achieve ultralow dielectric constant and ultralow dielectric loss over a wide temperature range, not to mention having excellent thermal conductivity and processability concurrently. We herein prepare dual-linker freestanding covalent organic framework films with tailorable fluorine content via interfacial polymerization.
View Article and Find Full Text PDFBiomaterials
May 2025
Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China. Electronic address:
Checkpoint inhibitor therapies do not benefit all patients, and adjuvants play a critical role in boosting immune responses for effective cancer immunotherapy. However, their systemic toxicity and suboptimal activation kinetics pose significant challenges. Here, this study presented a linker-based strategy to modulate the activation kinetics of Toll-like receptor 7/8 (TLR7/8) agonists delivered via poly (propylene sulfide) nanoparticles (PPS NPs).
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, Bld. 3, 119991 Moscow, Russia.
The simple approach of increasing the elastic properties of atactic poly(propylene carbonate) (PPC) with Mn = 71.4 kDa, ĐM = M/M = 1.86, and predominantly carbonate units (>99%) is suggested by selecting the appropriate hot pressing temperature for PPC between 110 and 140 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!