Background: A method for identifying tissue experiencing hypoxic stress due to atherosclerotic vascular disease would be clinically useful. Vascular endothelial growth factor-121 (VEGF121) is an angiogenic protein secreted in response to hypoxia that binds to VEGF receptors overexpressed by ischemic microvasculature. We tested the hypothesis that VEGF receptors could serve as markers for ischemic tissue and hence provide a target for imaging such tissue with radiolabeled human VEGF121.

Methods And Results: A rabbit model of unilateral hindlimb ischemia was created by femoral artery excision (n=14). Control rabbits (n=5) underwent identical surgery without femoral excision. On postoperative day 10, rabbits were intravenously administered 100 microCi of 111In-labeled recombinant human VEGF121, and biodistribution studies and planar imaging were conducted at 3, 24, and 48 hours. On postmortem gamma counting, there was greater accumulation of 111In-labeled VEGF121 in ischemic than in control tissue (P<0.02). Differential uptake of isotope by ischemic muscle was not seen in rabbits injected with 125I-labeled human serum albumin (n=6). Radioactivity imaged in hindlimb regions of interest was significantly higher in ischemic muscle than in sham-operated and contralateral nonoperated hindlimb at 3 hours (P<0.02). Immunohistochemical staining confirmed upregulation of VEGF receptors in ischemic skeletal muscle.

Conclusions: Identification of the ischemic state via targeted radiolabeling of hypoxia-induced angiogenic receptors is possible. This approach could be useful for monitoring the efficacy of revascularization strategies such as therapeutic angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.CIR.0000079100.38176.83DOI Listing

Publication Analysis

Top Keywords

vascular endothelial
8
endothelial growth
8
ischemic tissue
8
vegf receptors
8
tissue
5
targeted vivo
4
vivo labeling
4
labeling receptors
4
receptors vascular
4
growth factor
4

Similar Publications

Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1.

Cell Commun Signal

January 2025

Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.

Background: The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells.

View Article and Find Full Text PDF

Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.

View Article and Find Full Text PDF

Retinopathy of prematurity (ROP) is a proliferative retinal vascular disorder that critically affects the visual development of premature infants, potentially leading to irreversible vision loss or even blindness. Despite its significance, the underlying mechanisms of this disease remain insufficiently understood. In this study, we utilized the oxygen-induced retinopathy (OIR) mouse model and conducted endothelial functional assays to explore the role of Sterol Regulatory Element-Binding Protein 1 (SREBF1) in ROP pathogenesis.

View Article and Find Full Text PDF

VAMP8 as a biomarker and potential therapeutic target for endothelial cell dysfunction in atherosclerosis.

Gene

January 2025

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China. Electronic address:

Background: Endothelial cell dysfunction has a critical role in the pathophysiology of atherosclerosis. This study aims to uncover pivotal genes and pathways linked to endothelial cell dysfunction in atherosclerosis, as well as to ascertain the assumed causal effects and potential mechanisms.

Methods: Datasets relevant to endothelial cell dysfunction in atherosclerosis were collected and divided into training and validation sets.

View Article and Find Full Text PDF

The overview of lactylation in the placenta of preeclampsia.

Placenta

January 2025

Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China. Electronic address:

Background: Preeclampsia is a major challenge for obstetricians due to its severe impacts on maternal and fetal health. Lysine lactylation (Kla) derived from lactate is a novel type of post-translational modification which has been confirmed to affect the malignant progression of diseases as an epigenetic modifier. However, the systemic lactylome profiling of preeclampsia is still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!