The present study aims to unravel, in the same study, both morphological and functional specific substrates of encoding versus retrieval deficits in patients with amnestic mild cognitive impairment (MCI). For this purpose, 21 highly screened MCI patients with isolated memory impairment, who attended a memory clinic and fulfilled operational criteria for MCI, underwent (i) two episodic memory subtests designed to assess preferentially either incidental encoding or retrieval capacity; (ii) a high-resolution T1-weighted volume MRI scan; and (iii) a resting state [18F]fluoro-2-deoxy-D-glucose PET study. Using statistical parametric mapping, positive correlations between memory scores on one hand, and grey matter density and normalized partial volume effect-corrected brain glucose utilization (ncCMRglc) on the other hand, were computed. Deficits in both encoding and retrieval were correlated with declines in hippocampal region grey matter density. The encoding subtest also correlated with hippocampal ncCMRglc, whereas the retrieval subtest correlated with the posterior cingulate area ncCMRglc only. The present findings highlight a distinction in the neural substrates of encoding and retrieval deficits in MCI. Furthermore, they unravel a partial dissociation between metabolic and structural correlates, suggesting distinct interpretations. Hippocampal atrophy was related to both encoding and retrieval deficits, possibly reflecting a direct effect on hippocampal functioning, as well as an indirect effect, through remote functional disruption, on posterior cingulate region synaptic function, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awg196DOI Listing

Publication Analysis

Top Keywords

encoding retrieval
16
retrieval deficits
12
episodic memory
8
mild cognitive
8
cognitive impairment
8
substrates encoding
8
grey matter
8
matter density
8
subtest correlated
8
posterior cingulate
8

Similar Publications

Recently, a multi-scale representation attention based deep multiple instance learning method has proposed to directly extract patch-level image features from gigapixel whole slide images (WSIs), and achieved promising performance on multiple popular WSI datasets. However, it still has two major limitations: (i) without considering the relations among patches, thereby possibly restricting the model performance; (ii) unable to handle retrieval tasks, which is very important in clinic diagnosis. To overcome these limitations, in this paper, we propose a novel end-to-end MIL-based deep hashing framework, which is composed of a multi-scale representation attention based deep network as the backbone, patch-based dynamic graphs and hashing encoding layers, to simultaneously handle classification and retrieval tasks.

View Article and Find Full Text PDF

When retrieved, seemingly stable memories can become sensitive to significant events, such as acute stress. The mechanisms underlying these memory dynamics remain poorly understood. Here, we show that noradrenergic stimulation after memory retrieval impairs subsequent remembering, depending on hippocampal and cortical signals emerging during retrieval.

View Article and Find Full Text PDF

Network segregation during episodic memory shows age-invariant relations with memory performance from 7 to 82 years.

Neurobiol Aging

January 2025

Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0317, Norway; Department of Radiology and Nuclear Medicine, University of Oslo, Oslo 0317, Norway.

Lower episodic memory capability, as seen in development and aging compared with younger adulthood, may partly depend on lower brain network segregation. Here, our objective was twofold: (1) test this hypothesis using within- and between-network functional connectivity (FC) during episodic memory encoding and retrieval, in two independent samples (n = 734, age 7-82 years). (2) Assess associations with age and the ability to predict memory comparing task-general FC and memory-modulated FC.

View Article and Find Full Text PDF

Emotional events hold a privileged place in our memories, differing in accuracy and structure from memories for neutral experiences. Although much work has focused on the pronounced differences in memory for negative experiences, there is growing evidence that positive events may lead to more holistic, or integrated, memories. However, it is unclear whether these affect-driven changes in memory structure, which have been found in highly controlled laboratory environments, extend to real-world episodic memories.

View Article and Find Full Text PDF

Interplay of epilepsy and long-term potentiation: implications for memory.

Front Neurosci

January 2025

Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.

The interplay between long-term potentiation (LTP) and epilepsy represents a crucial facet in understanding synaptic plasticity and memory within neuroscience. LTP, a phenomenon characterized by a sustained increase in synaptic strength, is pivotal in learning and memory processes, particularly in the hippocampus. This review delves into the intricate relationship between LTP and epilepsy, exploring how alterations in synaptic plasticity mechanisms akin to those seen in LTP contribute to the hyperexcitable state of epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!