Several calmodulin (CaM) mutants were engineered in an effort to identify the functional implications of the oxidation of individual methionines in CaM on the activity of the constitutive isoforms of nitric oxide synthase (NOS). Site-directed mutagenesis was used to substitute the majority of methionines with leucines. Substitution of all nine methionine residues in CaM with leucines had minimal effects on the binding affinity or maximal enzyme activation for either the neuronal (nNOS) or endothelial (eNOS) isoform. Selective substitution permitted determination of the functional consequences of the site-specific oxidation of Met(144) and Met(145) on the regulation of electron transfer within nNOS and eNOS. Site-specific oxidation of Met(144) and Met(145) resulted in changes in the CaM concentration necessary for half-maximal activation of nNOS and eNOS, suggesting that these side chains are involved in stabilizing the productive association between CaM and NOS. However, the site-specific oxidation of Met(144) and Met(145) had essentially no effect on the maximal extent of eNOS activation in the presence of saturating concentrations of CaM. In contrast, the site-specific oxidation of Met(144) (but not Met(145)) resulted in a reduction in the level of nNOS activation that was associated with decreased rates of electron transfer within the reductase domain. Thus, nNOS and eNOS exhibit different functional sensitivities to conditions of oxidative stress that are expected to oxidize CaM. This may underlie some aspects of the observed differences in the sensitivities of proteins in vasculature and neuronal tissues to nitration that are linked to NOS activation and the associated generation of peroxynitrite.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi027097hDOI Listing

Publication Analysis

Top Keywords

site-specific oxidation
16
oxidation met144
16
met144 met145
16
nnos enos
12
nitric oxide
8
electron transfer
8
activation associated
8
cam
7
activation
6
oxidation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!