In all species studied to date, the function of heat shock protein 90 (Hsp90), a ubiquitous and evolutionarily conserved molecular chaperone, is inhibited selectively by the natural product drugs geldanamycin (GA) and radicicol. Crystal structures of the N-terminal region of yeast and human Hsp90 have revealed that these compounds interact with the chaperone in a Bergerat-type adenine nucleotide-binding fold shared throughout the gyrase, Hsp90, histidine kinase mutL (GHKL) superfamily of adenosine triphosphatases. To better understand the consequences of disrupting Hsp90 function in a genetically tractable multicellular organism, we exposed the soil-dwelling nematode Caenorhabditis elegans to GA under a variety of conditions designed to optimize drug uptake. Mutations in the gene encoding C elegans Hsp90 affect larval viability, dauer development, fertility, and life span. However, exposure of worms to GA produced no discernable phenotypes, although the amino acid sequence of worm Hsp90 is 85% homologous to that of human Hsp90. Consistent with this observation, we found that solid phase-immobilized GA failed to bind worm Hsp90 from worm protein extracts or when translated in a rabbit reticulocyte lysate system. Further, affinity precipitation studies using chimeric worm-vertebrate fusion proteins or worm C-terminal truncations expressed in reticulocyte lysate revealed that the conserved nucleotide-binding fold of worm Hsp90 exhibits the novel ability to bind adenosine triphosphate but not GA. Despite its unusual GA resistance, worm Hsp90 appeared fully functional when expressed in a vertebrate background. It heterodimerized with its vertebrate counterpart and showed no evidence of compromising its essential cellular functions. Heterologous expression of worm Hsp90 in tumor cells, however, did not render them GA resistant. These findings provide new insights into the nature of unusual N-terminal nucleotide-binding fold of Hsp90 and suggest that target-related drug resistance is unlikely to emerge in patients receiving GA-like chemotherapeutic agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514859PMC
http://dx.doi.org/10.1379/1466-1268(2003)8<93:eoaudh>2.0.co;2DOI Listing

Publication Analysis

Top Keywords

worm hsp90
20
hsp90
13
nucleotide-binding fold
12
nematode caenorhabditis
8
caenorhabditis elegans
8
human hsp90
8
reticulocyte lysate
8
worm
7
expression unique
4
unique drug-resistant
4

Similar Publications

Neuronal inclusions of hyperphosphorylated TDP-43 are hallmarks of disease for most patients with amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene coding for TDP-43, can cause some cases of familial inherited ALS (fALS), indicating dysfunction of TDP-43 drives disease. Aggregated, phosphorylated TDP-43 may contribute to disease phenotypes; alternatively, TDP-43 aggregation may be a protective cellular response sequestering toxic protein away from the rest of the cell.

View Article and Find Full Text PDF

Background: Lymphatic Filariasis (LF) is a neglected tropical disease affecting more than 882 million people in 44 countries of the world. A multi-epitope prophylactic/therapeutic vaccination targeting filarial defense proteins would be invaluable to achieve the current LF elimination goal.

Method: Two groups of proteins, namely Anti-oxidant (AO) and Heat shock proteins (HSPs), have been implicated in the effective survival of the filarial parasites in their hosts.

View Article and Find Full Text PDF

undergo age-dependent declines in muscle organization and function, similar to human sarcopenia. The chaperone UNC-45 is required to fold myosin heads after translation and is likely used for refolding after thermally- or chemically-induced unfolding. UNC-45's TPR region binds HSP-90 and its UCS domain binds myosin heads.

View Article and Find Full Text PDF
Article Synopsis
  • Heat shock is a serious stressor, and researchers studied how a specific ubiquitin ligase complex, CUL-6, helps the nematode C. elegans survive this stress.
  • The study found that CUL-6 enhances thermotolerance by promoting the degradation of the heat shock protein HSP-90 specifically in the intestine.
  • The effectiveness of CUL-6 in improving survival during heat shock relies on proper lysosomal function, as it directs HSP-90 to lysosome-related organelles for degradation.
View Article and Find Full Text PDF

Monogeneans are parasitic flatworms that represent a significant threat to the aquaculture industry. Species like Neobenedenia melleni (Capsalidae) and Rhabdosynochus viridisi (Diplectanidae) have been identified as causing diseases in farmed fish. In the past years, molecular research on monogeneans of the subclass Monopisthocotylea has focused on the generation of genomic and transcriptomic information and the identification in silico of some protein families of veterinary interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!