Induction of apoptosis by green tea polyphenols has been observed in various tumor cell systems, but whether green tea polyphenol-induced apoptosis requires caspase 3 for execution has not been confirmed. We previously reported that green tea polyphenol-induced apoptosis involved Apaf-1 accumulation and caspase 3 activation in the cytosol. In the current study, tumor cells either with deleted caspase 3 gene or expressing wild-type caspase 3 were treated with increasing concentrations of green tea polyphenol(s), followed by morphological analysis and caspase 3 activity assay. The caspase 3 null parental cell line was further examined in comparison with a well-characterized, caspase 3 wild type oral carcinoma cell line by MTT assay and BrdU incorporation assay. The results demonstrated that, while the mitochondrial function gradually declined to insignificant levels, caspase 3 null cells did not undergo apoptosis, which suggested that green tea polyphenol-induced apoptosis is a mitochondria-targeted, caspase 3-executed mechanism.

Download full-text PDF

Source

Publication Analysis

Top Keywords

green tea
24
tea polyphenol-induced
12
polyphenol-induced apoptosis
12
caspase
10
tumor cells
8
tea polyphenols
8
caspase null
8
green
6
apoptosis
6
tea
5

Similar Publications

Kombucha fortified with Cascade hops (Humulus lupulus L.): enhanced antioxidative and sensory properties.

Appl Microbiol Biotechnol

January 2025

Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland.

In recent years, there has been a surge in the production of kombucha-a functional beverage obtained via microbial fermentation of tea. However, fresh, unpasteurized kombucha is sensitive to quality deterioration as a result of, among other factors, oxidation. The addition of hops seems to be promising, due to their antioxidative properties, which may improve the stability of kombucha.

View Article and Find Full Text PDF

Background: Chronic soft tissue injury is characterized by sterile inflammation and pain. Gua sha with Masanggoubang oil (GSMO) treatment has been found to possess anti-inflammatory and analgesic effects.

Objectives: To explore the mechanism of GSMO in chronic soft tissue injuries.

View Article and Find Full Text PDF

Introduction: The use of weight loss supplements is increasing, often driven by online marketing. However, many of these supplements are adulterated with undeclared pharmaceutical substances, potentially posing significant health risks. We investigated the presence of sibutramine and sildenafil in weight loss supplements and assessed the associated clinical outcomes.

View Article and Find Full Text PDF

Formulation of catechin hydrate nanoemulsion for fortification of yogurt.

J Food Sci Technol

February 2025

Department of Food Process Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 India.

Unlabelled: Catechin hydrate (CH) is a kind of polyphenol present in many plantsincluding green tea, fruits, red wine and cocoa with very good antioxidant effect. The formulation of CH nanoemulsion increased the bioavailability and stability of catechin, allowing for easier food incorporation and faster absorption by the body. The major goal of the current study was to create a nanoemulsion as a reliable delivery mechanism for catechin hydrate and its incorporation into yogurt to increase its antioxidant activity.

View Article and Find Full Text PDF

Identification of non-volatile compounds during the pile fermentation process of Liupao tea using widely targeted metabolomics based on UPLC-QTOF-MS.

J Food Sci Technol

February 2025

School of Food and Pharmaceutical Engineering (Liupao Tea modern Industry College), Wuzhou University, Wuzhou, 543002 China.

Unlabelled: Pile fermentation plays a crucial role in the formation of the unique flavor of Liupao tea, which can effectively reduce the bitterness of the tea and promote the formation of red tea soup. In this study, the non-volatiles changes of Liupao tea during pile fermentation processing were fully analyzed by UPLC-QTOF-MS/MS. A total of 271 metabolites with significant differences were identified in Liupao tea during pile fermentation( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!