Any approach applied to drug discovery and development by the medical community and pharmaceutical industry has a direct impact on the future availability of improved, novel, and curative therapies for patients with cancer. By definition, drug discovery is a complex learning process whereby research efforts are directed toward uncovering and assimilating new knowledge to create and develop a drug for the purpose of providing benefit to a defined patient population. Accordingly, a highly desirable technology or approach to drug discovery should facilitate both effective learning and the application of newly discovered observations that can be exploited for therapeutic benefit. However, some believe that drug discovery is largely accomplished by serendipity and therefore appropriately addressed by screening a large number of compounds. Clearly, this approach has not generated an abundance of new drugs for cancer patients and suggests that a tangibly different approach in drug discovery is warranted. We employ an alternative approach to drug discovery, which is based on the elucidation and exploitation of biological, pharmacological, and biochemical mechanisms that have not been previously recognized or fully understood. Mechanism-based drug discovery involves the combined application of physics-based computer simulations and laboratory experimentation. There is increasing evidence that agreement between simulations based on the laws of physics and experimental observations results in a higher probability that such observations are more accurate and better understood as compared with either approach used alone. Physics-based computer simulation applied to drug discovery is now considered by experts in the field to be one of the ultimate methodologies for drug discovery. However, the ability to perform truly comprehensive physics-based molecular simulations remains limited by several factors, including the enormous computer-processing power that is required to perform the formidable mathematical operations and data processing (e.g. memory bandwidth, data storage and retrieval). Another major consideration is the development of software that can generate an appropriate and increasingly complex physical representation of the atomic arrangements of biological systems. During the past 17 years, we have made tremendous progress in addressing some of these obstacles by developing and optimizing physics-based computer programs for the purpose of obtaining increasingly accurate and precise information and by improving the speed of computation. To perform physics-based simulations that involve complex systems of biological and pharmaceutical interest, we have developed methods that enable us to exceed Moore's law. This has been accomplished by parallel processing as well as other methods that have enabled us to study more complex and relevant molecular systems of interest. This paper provides an overview of our approach to drug discovery and describes a novel drug, currently in clinical development, which has directly resulted from the application of this approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00280-003-0653-5 | DOI Listing |
Acc Chem Res
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Designing binders to target undruggable proteins presents a formidable challenge in drug discovery. In this work, we provide an algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model and subsequently screen these novel sequences for target-selective interaction activity via a contrastive language-image pretraining (CLIP)-based contrastive learning architecture.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Basic Medical Sciences, Guangzhou Νational Laboratory, Guangzhou Medical University, Guangzhou 511436, China.
The farnesoid X receptor (FXR) regulates key physiological processes, such as bile acid homeostasis and lipid metabolism, making it an important target for drug discovery. However, the overactivation of FXR often leads to adverse effects. This study presents the development of a novel fluorescent probe utilizing the computer-aided drug design (CADD) approach to optimize linkers between more potent warhead and FITC fluorescent groups.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Rabindranath Tagore University, Hojai 782435, Assam, India.
The synthesis of triazoles plays an important role in drug discovery research. 1,2,4-triazoles are considered significant scaffolds among several bioactive heterocycles due to their extensive use in the pharmaceutical and agrochemical sectors. Consequently, the importance of the synthesis of 1,2,4-triazoles a sustainable method has increased.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai, 264001, China.
Background: Gastric cancer (GC) remains a significant health burden, calling for the discovery of novel biomarkers. Golgi apparatus, a crucial cellular organelle involved in tumorigenesis, remains underexplored in GC research. A comprehensive understanding of its role and associated mechanisms is urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!